1	Journal name: Ecosphere
2	Manuscript type: Article
3	Subject track: Climate Ecology
4	Manuscript title: Season influences interspecific responses of canopy-forming kelps to future
5	warming and acidification at high latitude
6	Author names: Lauren E. Bell ^{*1†} , Lily Westphal ² , Evan O'Brien ¹ , Jason A. Toy ^{1‡} , Haleigh
7	Damron ¹ , Kristy J. Kroeker ¹
8	*Corresponding author: laebell@ucsc.edu
9	¹ University of California Santa Cruz, Department of Ecology and Evolutionary Biology,
10	130 McAllister Way, Santa Cruz, CA 95060
11	² California State University Monterey Bay, 5108 Fourth Ave., Marina, CA 93933
12	Open research statement: The data that support the findings of this study have been submitted
13	to BCO-DMO and will be openly available at www.bco-dmo.org, project number 756735.
14	Key words/phrases: kelp forests; ocean acidification; ocean warming; phenology; primary
15	production; seasonal; seaweed; winter
16	
17	
18	
19	
20	
21	[†] Author L Bell present address: Sitka Sound Science Center 834 Lincoln St. Sitka AK 99835
22	[‡] Author J. Toy present address: Old Dominion University Mills Godwin Building Rm 110
23	Norfolk VA 23508
	1011010, +11 2 3300

Page 3 of 73

Ecosphere

24 Abstract

25 Variability in primary producers' responses to environmental change may buffer higher trophic 26 levels against negative impacts to basal resource composition. Then again, in instances where 27 consumers rely on a few species to meet their energetic requirements at specific times of the 28 year, altered community production dynamics may significantly impact food web resilience. In 29 high latitude kelp forests, a complementary annual phenology of seaweed production supports 30 coastal marine consumers' metabolic needs across large seasonal variations in their environment. 31 Yet, marine consumers in these systems may face significant metabolic stress in future winter 32 environments, particularly if they lack the resources to support their increased energetic 33 demands. In this study we investigate how the growth and nutritional value of three dominant, 34 coexisting macroalgal species found in subpolar kelp forests will respond to ocean acidification 35 and warming in future winter and summer seasons. We find that the three kelps Macrocystis 36 pyrifera, Hedophyllum nigripes, and Neoagarum fimbriatum differ in their vulnerability to future 37 environmental conditions, and that the seasonal environmental context of nutrient and light 38 availability shapes these responses. Our results suggest that poleward fringe populations of M. 39 *pyrifera* may be relatively resilient to anticipated ocean warming and acidification. In contrast, 40 ocean warming conditions caused a decrease in the biomass and nutritional quality of both 41 understory kelps. Considering the unique production phenology of *H. nigripes*, we emphasize 42 that negative impacts to this species in future winters may be of consequence to consumer 43 energetics in this system. This work highlights how interspecific variation in autotrophs' 44 responses to global change can disrupt the diversity and phenological structure of energy supply 45 available to higher trophic levels.

46

2

47 Introduction

48 Global environmental change is already affecting primary producers worldwide (Cavicchioli et 49 al., 2019; Terrer et al., 2019; Walker et al., 2021). Anticipating how physiological effects on 50 autotrophs affect higher trophic levels requires an understanding of how the quantity, quality, 51 and identity of these basal resources will shift (Ainsworth & Long, 2004; Koch et al., 2013; 52 Maschler et al., 2022). Species-specific variation in response to elevated CO_2 concentrations and 53 temperatures may lead to a restructuring of primary producer community composition as well as 54 a disruption of the phenology of production in many systems (Cornwall et al., 2012; Franklin et 55 al., 2016; Poorter, 1988; Ullah et al., 2018). Further, effects of environmental change on the 56 nutritional value or palatability of basal resources can significantly impact consumer energetics and food web structure (Campanyà-Llovet et al., 2017; Cebrian et al., 2009; Facey et al., 2014; 57 58 Rosenblatt & Schmitz, 2016). There is a need to compare the responses of dominant, coexisting 59 primary producers to global environmental change to assess whether interspecific variability can 60 buffer the emergent, bottom-up effects in these ecosystems (e.g., Gilbert et al., 2020; Liu et al., 61 2018). 62 In marine ecosystems, macroalgae (seaweeds) support complex coastal food webs (Graham,

63 2004; Hurd et al., 2014). Similar to terrestrial plants, global environmental change is expected to 64 affect macroalgal growth and biomass (Harley et al., 2012). In the absence of evolution, elevated 65 temperatures with ocean warming (OW) may enhance algal primary productivity within optimal 66 temperature ranges, and negatively impact productivity once thermal optima are exceeded 67 (Eggert, 2012; Hurd et al., 2014; Kram et al., 2016). The effects of elevated seawater pCO_2 and 68 reduced pH with ocean acidification (OA) on the photosynthesis of non-calcified seaweeds are 69 expected to differ based on each species' carbon use strategy (Cornwall et al., 2012; Hepburn et

70	al., 2011; Hurd et al., 2020, but see Paine et al., 2023). Further, elevated temperature and pCO_2
71	can interact with each other and other environmental variables, such as light and nutrient
72	availability, to shape species' responses (Celis-Plá et al., 2015; Hollarsmith et al., 2020; King et
73	al., 2017, 2020; Ladah & Zertuche-González, 2022). Thus, effects on individual species will
74	hinge on how environmental change layers onto the natural temporal and spatial variability of
75	abiotic resources in a particular ecosystem (Kroeker et al., 2020).
76	In addition to the direct effects of global environmental change on macroalgal primary
77	production and growth, OW and OA can alter their value to consumers. Increased temperatures
78	will affect the rate of algal nutrient uptake (Raven & Geider, 1988), and increased pCO_2 can
79	increase thallus nitrogen content (Falkenberg et al., 2013; but see Olischläger et al., 2014).
80	Increased nitrogen content can enhance a seaweed's palatability to herbivores that preferentially
81	consume nitrogen-rich food sources (Duffy & Paul, 1992; Hillebrand et al., 2000; Russell &
82	Connell, 2007). However, the presence of secondary metabolites that may deter grazing, such as
83	phenolic compounds, may be a stronger determinant of herbivores' consumption (Amsler et al.,
84	2005; Demko et al., 2017; Granado & Caballero, 2001; Steinberg, 1985). Elevated pCO_2 and
85	temperature can reduce, increase, or have no effect on seaweed phenolic concentrations
86	depending on the species (Arnold et al., 2012; Kumar et al., 2018; Phelps et al., 2017) and their
87	relative access to light and nutrients (Celis-Plá et al., 2015). Future alterations to seaweeds'
88	secondary metabolic processes have strong potential to change consumptive interactions and
89	energy flow through the base of coastal food webs (Doubleday et al., 2019; Duarte et al., 2016;
90	Jin et al., 2020).
91	Interspecific variation in macroalgal responses to environmental change will alter the

92 composition of seaweed communities and could disrupt the phenology of consumers' food

4

93	supply (Harley et al., 2012). These effects will be particularly evident in seasonally dynamic
94	environments. High latitude marine ecosystems are characterized by large annual variations in
95	temperature, pCO_2 , light, and nutrients that influence the seasonal dynamics of primary
96	production and algal physiology (Bell & Kroeker, 2022; Takahashi et al., 1993; Tian et al.,
97	2001). Increases in temperature and pCO_2 will overlay current fluctuations in temperature,
98	pCO ₂ , light, and nutrients in these systems, giving rise to novel environmental scenarios that will
99	drive seasonally distinct effects on macroalgal physiology (Graiff et al., 2015; Gunderson et al.,
100	2016; Harley et al., 2012; Kroeker et al., 2020). The energetic linkages among trophic levels in
101	seasonally dynamic marine food webs are highly dependent on tight temporal alignment between
102	food supply and consumer demand (Sydeman & Bograd, 2009). Thus, shifts in the seasonal
103	phenology of macroalgal production and quality could lead to mismatches in the timing and
104	strength of these consumptive interactions (Wahl et al., 2020). This may be particularly
105	consequential at high latitudes if consumers experience heightened seasonal windows of
106	metabolic stress under future environmental change (Kroeker et al., 2021).
107	The goal of this study was to quantify potential shifts in the quantity and quality of three
108	dominant, coexisting seaweed species to ocean acidification and warming. Our study took place
109	in Sitka Sound, Southeast Alaska, a high latitude region of the North Pacific where pronounced
110	increases in sea surface temperatures and decreases in sea surface pH are anticipated in the next
111	century (IPCC, 2018; Mathis et al., 2015) We focus on three large, canopy forming kelp species
112	that dominate macroalgal biomass within the giant kelp forests of this region: Macrocystis
113	pyrifera, Hedophyllum nigripes, and Neoagarum fimbriatum. The annual growth regimes of
114	these three species are distinct in Sitka Sound (Bell & Kroeker, 2022), which may reflect
115	underlying differences in their physiological optima and tolerances. H. nigripes is a cold-adapted

116 understory kelp found primarily in Arctic and sub-Arctic waters (Dankworth et al., 2020; Grant 117 et al. 2020; McDevit & Saunders, 2010). This species' annual growth is controlled by a strong 118 endogenous clock, with blade elongation initiating in January and curtailing abruptly in early 119 summer (Bell & Kroeker, 2022; Lüning, 1993). In contrast, the more temperate kelps M. pyrifera 120 and N. fimbriatum sustain relatively high growth rates through spring, summer, and early fall 121 (Bell & Kroeker, 2022). Additionally, while *M. pyrifera* dominates the understory kelps in 122 absolute biomass and production rates, *H. nigripes* and *N. fimbriatum* are consistently more 123 nitrogen dense per gram of tissue (Bell & Kroeker, 2022). Thus, the co-occurrence of these kelps 124 currently functions to provide a complementary energy supply to coastal consumers throughout 125 the calendar year (Kroeker et al., 2021). 126 To isolate the seasonal effects of environmental change on these kelp species, we grew adult 127 sporophyte blades of each macroalga within two, month-long experiments in winter (Feb-March) 128 and summer (Aug-Sept). Experimental controls were designed to approximate current 129 environmental conditions in Sitka Sound (Bell et al., 2022; Bell & Kroeker, 2022; Kroeker et al., 130 2021), and OA and OW treatments were based on projected end-of-century scenarios of ocean 131 acidification and warming for this region (IPCC 2018; Mathis et al., 2015). At the end of the 132 experiments, we assessed the seasonal impact of OW and OA on kelp growth rates, thallus 133 nitrogen content, and carbon acquisition strategy based on thallus δ^{13} C values. Finally, to test 134 whether kelp palatability was impacted by future warming and acidification, we used tissue of H. 135 nigripes and N. fimbriatum grown during the experiments to perform feeding assays with a 136 common kelp forest consumer. We hypothesized that the three kelp species would differ in their 137 sensitivity to ocean warming and acidification. We also anticipated that impacts to the biomass 138 and quality of *H. nigripes* in future winter conditions could be particularly consequential to kelp

forest consumers, given the early season growth and nitrogen-rich resource that this species

140 represents during a metabolically demanding season (Bell & Kroeker, 2022; Kroeker et al., 141 2021). 142 This research responds to the call for a more nuanced understanding of how global change will 143 alter marine primary producer resources by integrating natural variation in environmental drivers 144 (Campanyà-Llovet et al., 2017; Rosenblatt & Schmitz, 2016; Wahl et al., 2020). We build from 145 our close understanding of the natural environmental variability and kelp production dynamics in 146 this system to isolate seasonally specific effects of OW and OA on three foundational seaweed 147 species and interpret the potential impact of these changes on community structure and trophic 148 interactions (Cebrian et al., 2009; Harley et al., 2017; Seibold et al., 2018). This work improves 149 our understanding of how asynchronous responses among co-occurring primary producers to 150 global environmental change may shape the bottom-up effects on the ecosystems they support.

151

139

152 Materials and methods

153 Seasonal experiments for kelp species

154 To tease apart the effects of seasonal variation in light availability and nutrients on the response 155 of high-latitude kelp species to pH and temperature, we conducted two separate studies: a 156 'winter' experiment from February 12 – March 18, 2020 (35 d), and a 'summer' experiment 157 from August 15 – September 16, 2020 (32 d). In our experimental design, analysis, and 158 reporting, we endeavored to follow best practices for OA research with macroalgae (Cornwall et al., 2012; Cornwall & Hurd, 2016). Both experiments took place at the Sitka Sound Science 159 160 Center in a flow-through seawater system drawing source water from 20 m depth (MLLW) in 161 Sitka Sound, Alaska. Incoming seawater was filtered to 20 µm and routed through a UV filter

162	(Smart UV®, Pentair) before diverging into two temperature-controlled (TITAN® heat pump
163	and Optima compact heaters, AquaLogic) recirculating tanks representing treatments for
164	'current' or control temperatures (7°C in winter; 14°C in summer) and 'future' OW projections
165	(11°C in winter; 18°C in summer)(IPCC, 2018) by season. From here, temperature regulated
166	seawater was pumped into eight header tanks where pH was maintained at setpoint levels for
167	control conditions (pH _T 7.6 in winter; pH _T 7.9 in summer) and 'future' OA projections (pH _T 7.2
168	in winter; pH _T 7.5 in summer)(Mathis et al., 2015) through a relay system ($N = 2$ header tanks
169	per pH/temperature treatment). In both seasonal experiments, achievable pH_T setpoints for our
170	control treatments were constrained by the ambient pH of incoming seawater and were therefore
171	lower than the typical seasonal in situ pH_T minima observed on local rocky reefs by $\sim 0.1 - 0.2$
172	pH units (Kroeker et al., 2021). However, the lower-than-average pH values of our control
173	treatments did still fall within the observed pHs captured across all years of in situ environmental
174	data. We chose to maintain the projected end-of-century pH offset for this region (~0.4 pH units)
175	to define our OA treatment setpoints relative to our achievable control pH levels. A DuraFET
176	sensor (Honeywell) in each header tank communicated real-time pH measurements to a
177	controller (UDA 2152, Honeywell, integrated with LabVIEW, National Instruments) that
178	regulated injection of pre-equilibrated low pH seawater through solenoid valves into the headers
179	to maintain pH at treatment set points. The low pH (~6) seawater was produced by bubbling pure
180	CO ₂ gas into two tanks of seawater flowing from each temperature-controlled tank. Once in each
181	header tank, the CO ₂ and temperature-equilibrated seawater was continuously mixed before
182	delivery to 24 experimental aquaria ($N = 3$ aquaria per header) at an average flow-through rate of
183	2-2.5 L min ⁻¹ aquaria ⁻¹ .

184	Seawater nutrient concentrations were not manipulated, and thus reflected what was delivered
185	through source water inflow to the system during each experiment. Due to the complex controls
186	of nutrient flux onto the Northeast Pacific shelves, there is little consensus on how seasonal
187	nutrient supply in Sitka Sound may change in the future (Hermann et al., 2009; Hood & Scott,
188	2008; Jenckes et al., 2022; Romero et al., 2022). Therefore, we chose to assume that nutrient
189	availability, like seasonal light availability, would not differ significantly in this region in the
190	future. All aquaria were fitted with a full-spectrum light (Aqua Illumination) that provided
191	seasonally relevant regimes of photosynthetically active radiation spectra and photoperiod within
192	the aquaria based on observations during overcast days in Sitka Sound (Bell et al., 2022). The
193	entire experimental system was shielded from external light sources, and aquaria positions were
194	randomized by treatment and relative location within the system to minimize spatial variation
195	among the random factors aquaria and header.
196	We monitored temperature, salinity, DO, and pH_{NBS} daily in each aquarium with a handheld
197	meter (YSI). To capture diel variation in these parameters associated with organismal
198	photosynthesis and respiration, we also performed these measurements every three hours in each
199	aquarium for 24 hrs, once during the winter experiment (March 4-5) and twice during the
200	summer experiment (August 30-31, Sept 14-15). We collected seawater for determination of
201	nutrient concentrations within the experimental system at the beginning, middle, and end of each
202	experiment (N = 6 samples ⁻¹ treatment ⁻¹ experiment ⁻¹). To compare in situ nutrient data with
203	aquaria conditions during the experiment, we also collected benthic seawater at Talon Is. (57.073
204	N, 135.414 W), Sitka Sound, for determination of nutrient concentrations in February and
205	August 2020 (N=3 samples ⁻¹ season ⁻¹). Seawater for nutrient samples was immediately filtered
206	through a 0.2 μ m filter and frozen until analysis for dissolved inorganic nitrogen content as NO _x

207

Ecosphere

(NO₃ + NO₂) and ammonium (NH₄⁺) on a Lachat QuikChem 8000 Flow Injection Analyzer

208	(detection limits: $< 0.28 \ \mu M \ NO_x$, $< 2.40 \ \mu M \ NH_4$; average run measurement error $< 0.1 \ \mu M$
209	$NO_x < 0.8 \ \mu M \ NH_4$).
210	Discrete water samples for carbonate chemistry analysis were collected from each aquarium and
211	header tank at the beginning, middle, and end of each experiment. These samples were collected
212	without aeration and poisoned with saturated $HgCl_2$ (0.025%) in glass bottles within 20 minutes.
213	Airtight samples were transported to the University of California Santa Cruz (UCSC) for
214	analysis within 3.5 years of collection. We measured water sample pH spectrophotometrically
215	(Shimadzu, UV-1800) using <i>m</i> -cresol purple following best practices (Dickson et al., 2007), with
216	a mean standard error of 0.0013 pH units among sample triplicates. We measured water sample
217	total alkalinity (TA) using open cell titration (Metrohm, 905 Titrandro) and corrected against
218	certified reference materials of CO2 in seawater (Dickson laboratory, Scripps Institute of
219	Oceanography). Mean standard error was 0.87 µmol kg ⁻¹ SW ⁻¹ among sample triplicates. To
220	calculate water sample pH on the total hydrogen ion concentration scale (pH_T ; mol kg ⁻¹ SW ⁻
221	¹)(Dickson, 1993), we used our laboratory measurements of spectrophotometric pH and TA, YSI
222	measurements of temperature and salinity recorded concurrently with discrete water sample
223	collection, and stoichiometric dissociation constants (Dickson & Millero, 1987; Mehrbach et al.,
224	1973) as inputs to the program CO2SYS (Lewis & Wallace, 1998; Pierrot et al., 2006). We then
225	used calculated pH_T values to calibrate the continuous pH dataseries recorded by the DuraFET
226	sensor in each header tank.
227	Kelp used in both winter and summer experiments came from 4.5-7.5 m depth at Talon Is.

228 (57.073 N, 135.414 W), Sitka Sound. We collected these experimental 'individuals' as whole

thalli (*Neoagarum fimbriatum* and *Hedophyllum nigripes*), or as single blades with their attached

230	pneumatocysts that were cut from young sporophytes at approximately 1 m above their holdfasts
231	(Macrocystis pyrifera). During transport to the laboratory and prior to the start of the
232	experiments (< 2 d), we held all algae continuously in ambient flow-through seawater (winter
233	experiment: ~6°C, pH _T 7.8; summer experiment: ~13.5°C, pH _T 8.0). We removed individuals
234	briefly only to clean off epiphytes and record initial morphometrics (maximum blade length,
235	total wet mass) after trimming all blades to 10 cm total length. We also took pictures of each
236	trimmed blade to estimate total surface area using ImageJ (NIH v1.8.0).
237	In both the winter and summer experiments, we randomly assigned 3 individuals of each kelp
238	species to each experimental aquaria ($N = 18$ individuals species ⁻¹ treatment ⁻¹). We affixed
239	individuals upright in aquaria by placing their stipes or pneumatocysts through three-strand line
240	suspended over the open ends of 5 cm tall PVC stands. After all seaweeds were processed for
241	initial morphometrics, we gradually changed pH and temperature in treatment tanks stepwise
242	over the course of 3 d to reach final setpoints. During the experiment, kelps were visually
243	checked daily for necrosis and were lightly brushed biweekly during aquaria cleaning to remove
244	diatoms.
245	At the end of each experiment, individuals were measured and photographed for final
246	morphometrics. Due to the difficulty in capturing three-dimensional tissue growth and the error
247	inherent in wet mass measurements, we estimated kelp growth rates using three different metrics:
248	wet mass (g), maximum blade length (cm), and total blade surface area (cm ²). We used the initial
249	(G _{initial}) and final (G _{final}) measurements of each metric to calculate three relative growth rates

250 (RGR; $\% d^{-1}$) for each individual using the equation:

252

 $RGR_{(mass, length or surface area)} = rac{log(rac{G_{final}}{G_{initial}}) \cdot 100}{\Delta t}$

where Δt (d) is the total days elapsed between the beginning and end of the experiment. Relative growth rates were used for subsequent statistical analyses of experimental results. Absolute blade length extension rates were used to compare experimental growth to *in situ* kelp growth

256 measurements (Bell & Kroeker, 2022).

From each individual, we excised new blade tissue grown during the experiment adjacent to the

258 intercalary meristem and pooled this tissue for all species replicates in each aquarium. A portion

259 of this tissue was frozen at -20°C for use in feeding assays (see *Algal palatability assays*, below).

260 The other portion of this tissue was dried at 60°C for >24 hr and analyzed for nitrogen (N)

261 content (% dry mass) and δ^{13} C values (‰) by the UCSC Stable Isotope Laboratory using a CE

262 Instruments NC2500 elemental analyzer coupled to a Thermo Scientific DELTAplus XP isotope

ratio mass spectrometer via a Thermo-Scientific Conflo III (routine measurement error ≤ 1.0 %C

and ≤ 0.2 %N). We also analyzed blade tissue from non-experimental kelp individuals collected

at Talon Is. in each season ('field controls'; N=6 species⁻¹ season⁻¹) for elemental and isotopic
analysis.

We quantified variability in relative growth rates, nitrogen content, and δ^{13} C values of each kelp species during each experiment using linear mixed-effects models (R; R Core Team 2022). We specified *pH*, *temperature* and the *interaction between pH and temperature* as fixed factors. In models of growth rate, we specified *aquaria* nested in *header* as random intercepts using restricted maximum likelihood. In models of kelp species' tissue nitrogen content and δ^{13} C values, in which samples were pooled by aquaria, we specified *header* as the random intercept

(1)

273 using restricted maximum likelihood. We used Q-Q plots and Tukey-Anscombe plots to confirm 274 that all models satisfied the assumption of normality and that group variances were roughly 275 similar (Winter, 2013). To conservatively account for the influence of heteroscedasticity, we 276 used Satterthwaite's method for t-tests to determine p-values for the effects of fixed factors. 277 When we detected an interaction between fixed factors, we computed estimated marginal means 278 for pairwise contrasts among factor combinations with Satterthwaite's method for determining 279 degrees of freedom. Finally, in the case of one species' response to experimental treatments 280 $(\delta^{13}C)$ values of *M. pyrifera* in winter), where there was no interaction among fixed factors but 281 each factor had a significant and 'opposite' effect on algal response, we used a custom contrast 282 to test whether the combined treatment effect of winter OW and OA was significantly distinct 283 from the kelp's response in winter control conditions.

284 Algal palatability assays

285 We used tissue from *H. nigripes* and *N. fimbriatum* individuals grown in the laboratory (see 286 Seasonal experiments for kelp species, above) to investigate whether future ocean conditions 287 affect the palatability of these understory kelp species in either season. In April 2021, we 288 modified methods used by Hay et al. (1994) to create 'gels' of homogenized kelp tissue 289 suspended in agar and enmeshed in squares of window screen. Each 30 cm² gel was formed from 290 0.1547 ± 0.0004 g (mean \pm SE) of freeze dried (FreeZone, Labconco) H. nigripes or N. 291 fimbriatum tissue growth in either the control treatment or the combination OW and OA 292 treatment from each seasonal experiment. The total number of gels used for the feeding assays 293 was limited by the available kelp tissue grown during each experiment, and was consequently 294 lower for gels made from tissue grown in the winter experiment (*H. nigripes*: N = 11 gels 295 treatment⁻¹, *N. fimbriatum*: N = 12 gels treatment⁻¹) versus the summer experiment (*H. nigripes*:

296	N = 24 gels treatment ⁻¹ , <i>N. fimbriatum</i> : $N = 23$ gels treatment ⁻¹). We ran 'no-choice' palatability
297	assays by feeding these seaweed gels to the common kelp forest grazer, Strongylocentrotus
298	<i>droebachiensis</i> (green urchin). Urchins with a test diameter of 24 ± 3 mm were collected from
299	the intertidal, starved for 48 hrs, and then placed in a flow-through chamber with a single gel in
300	ambient seawater conditions (~7 °C, ~8.0 pH) for 48 hrs. We photographed each gel before and
301	after the assay and determined relative consumption of seaweeds grown under different
302	treatments as a proxy for palatability using Image J (NIH v1.8.0). We assessed differences in
303	relative consumption of N. fimbriatum or H. nigripes tissue using two-way Analysis of Variances
304	(ANOVAs) with fixed factors of treatment, season, and the interaction between treatment and
305	season. All data were checked for normality using QQ-plots and homoscedasticity was tested by
306	visual inspection of the residuals. A Tukey's HSD post hoc comparison of means was used to
307	determine significant pairwise differences among treatments.
308	
309	Results
310	Seasonal experiments for kelp species
311	Experimental conditions

309 Results

312 Replicate experimental aquaria were successfully maintained at pH_T and temperature setpoints 313 offset by -0.4 pH units and +4°C between control and OA and OW treatments within each 314 seasonal experiment (Table 1). Discrete water samples confirmed that pCO_2 also differed by 315 treatment and experiment. Salinity and total alkalinity did not differ among treatment aquaria 316 within each seasonal experiment. Dissolved oxygen concentrations were up to 1 mg/L higher in 317 aquaria assigned a lower temperature treatment compared to aquaria with elevated temperatures 318 within each experiment. Light regimes were maintained uninterrupted throughout each seasonal

experiment at PPFD 10-25 µmol m⁻² s⁻¹, 7.5 h d⁻¹ (winter experiment) and PPFD 40-80 µmol 319 $m^{-2} s^{-1}$, 11 h d⁻¹ (summer experiment). Diel pH cycles within aguaria due to algal photosynthesis 320 321 and respiration were up to 0.05 pH units during the winter and up to 0.1 pH units in the summer 322 experiment, but did not differ among treatments. 323 Due to analytical error, there were insufficient samples to assess the relative nutrient 324 concentrations among all treatments in either experiment. Experimental nutrient concentrations 325 of NO_x and NH₄ are reported as mean values in each experiment (Table 1). While experimental 326 NOx concentrations were similar to observations in the field, average ammonium concentrations 327 within aquaria during the summer experiment were notably higher than were observed 328 concurrently in situ. Seawater samples collected at Talon Is. had average nutrient concentrations of 16.7 mg L⁻¹ NO_x and 7.6 mg L⁻¹ NH₄ in February and 1.4 mg L⁻¹ NO_x and 2.8 mg L⁻¹ NH₄ in 329

330 August.

331 Kelp growth

332 Treatment effects on kelp growth rates were consistent regardless of growth metric. Hereafter,

333 we report growth results in terms of relative change in individuals' wet mass (RGR_{mass}), which

334 can best capture three-dimensional changes in individuals' stipe, pneumatocyst or blade

335 morphologies.

The effects of OW and OA on kelp growth differed among species (Fig. 1). For one species (*H*.

nigripes), growth was lower in OW treatments compared to control treatments in both seasonal

experiments (winter: p < 0.001, Appendix S1: Table S1; summer: p < 0.001, Appendix S1; summer: p < 0.001, App

339 S2). Another species' (*N. fimbriatum*) growth was lower under elevated temperatures in the

summer experiment compared to growth in the control treatment (p < 0.001, Appendix S1: Table

341 S4), but was not impacted under winter OW conditions (Appendix S1: Table S3). This is in

342 contrast to growth of the kelp *M. pyrifera*, which was not affected by OW in either winter 343 (Appendix S1: Table S5) or summer (Appendix S1: Table S6) experiments. There was no effect 344 of pH or the interaction between temperature and pH on the growth of any species in the summer 345 experiment. In the winter experiment, there was a marginally significant interaction between 346 temperature and pH on *H. nigripes*' growth (p = 0.057). Post-hoc contrasts among treatments 347 indicate that this interaction was driven by the marginally significant effect of OA in 348 combination with OW on the RGR_{mass} of *H. nigripes* compared to the control treatment (p =349 0.054), while *H. nigripes* 'growth under OW alone was significantly lower than in the control 350 treatment (p < 0.001) and OA alone had no effect on the species' growth (p = 0.972). There was 351 no effect of pH or the interaction between temperature and pH on the growth of N. fimbriatum or 352 *M. pyrifera* in the winter experiment. 353 In the winter experiment, blade length extension rates of *H. nigripes* grown in control pH and 354 temperature treatments were lower than observed growth rates for this understory kelp in Sitka 355 Sound in February and March (Appendix S1: Figure S1) (Bell & Kroeker, 2022). Blade length 356 extension rates of both N. fimbriatum and H. nigripes in control pH and temperature conditions 357 of the summer experiment were comparable to observed length extension rates in August and 358 September in Sitka Sound (Bell & Kroeker, 2022). We do not have in situ blade extension data

359 for *M. pyrifera* to enable comparison of experiment versus field growth rates.

360 Nitrogen content

All three kelp species exhibited lower tissue nitrogen content (as % tissue dry mass) when grown under OW conditions compared to control treatments in at least one of the seasonal experiments (Fig. 2). Nitrogen content of *H. nigripes* was reduced under elevated temperatures in the winter experiment (p = 0.004, Appendix S1: Table S7), but not the summer experiment (Appendix S1:

16

365	Table S8). Meanwhile, elevated temperatures reduced the tissue nitrogen content of N.
366	<i>fimbriatum</i> in both winter ($p = 0.005$, Appendix S1: Table S9) and summer ($p = 0.007$, Appendix
367	S1: Table S10) experiments compared to control treatments. There was no effect of either pH or
368	the interaction of temperature and pH on %N of <i>H. nigripes</i> or <i>N. fimbriatum</i> in either season.
369	Similar to <i>H. nigripes</i> , nitrogen content of <i>M. pyrifera</i> tissue in the winter experiment was lower
370	under elevated temperatures than in control conditions ($p < 0.001$, Appendix S1: Table S11), but
371	was not affected by OW in the summer experiment. M. pyrifera was unique among the three
372	kelps in that its nitrogen content was increased in the winter OA treatment relative to winter
373	control conditions ($p = 0.003$), although there was no interaction between pH and temperature.
374	Because the effects of pH and temperature on <i>M. pyrifera</i> 's %N in winter were similar in
375	magnitude but opposite in 'direction', %N of <i>M. pyrifera</i> tissue grown under the combined OW
376	and OA treatment was not statistically distinguishable from tissue grown in control conditions (p
377	= 0.577). In the summer experiment, <i>M. pyrifera</i> %N was not affected by temperature, pH, or the
378	interaction between factors (Appendix S1: Table S12).
379	δ^{13} C values
380	Ocean acidification treatments reduced thalli $\delta^{13}C$ values relative to control treatments in both
381	seasons for <i>H. nigripes</i> (winter: $p < 0.001$, Appendix S1: Table S13; summer: $p = 0.004$,
382	Appendix S1: Table S14) and <i>N. fimbriatum</i> (winter: p = 0.001, Appendix S1: Table S15;

- summer: p < 0.001, Appendix S1: Table S16)(Fig. 3). In contrast, tissue δ^{13} C values of *M*.
- 384 *pyrifera* were not reduced under low pH conditions in the winter experiment (Appendix S1:
- 385 Table S17), but were reduced under OA relative to control treatments in the summer experiment
- 386 (p = 0.004, Appendix S1: Table S18). Elevated temperatures also impacted *H. nigripes*' tissue
- δ^{13} C values, but in a different manner in each season. In the winter experiment, δ^{13} C values of *H*.

nigripes' thalli grown in higher temperatures were elevated compared to δ^{13} C values of thalli in control treatments (p = 0.031), whereas δ^{13} C values of *H. nigripes*' thalli in summer experiment OW conditions were reduced relative to controls (p = 0.006). We did not detect an interactive effect of pH and temperature on *H. nigripes*' tissue δ^{13} C in either season. There was no effect of OW or the interaction between OW and OA on the δ^{13} C values of *N. fimbriatum* or *M. pyrifera* in either experiment.

- -
- 394 *Algal palatability assays*

Palatability of *H. nigripes* ' tissue differed between treatment and season (Appendix S1: Table S19; interaction between treatment and season: p = 0.051). Urchins consumed over 30% more *H. nigripes* ' tissue grown in future summer OW and OA than tissue grown under controls in the summer experiment (Fig. 4; p = 0.024). Conversely, urchins consumed similar quantities of *H. nigripes* tissue from the winter experiment, regardless of the treatment conditions during growth (p = 0.969). There was no effect of pH and temperature treatment, season, or their interaction on the palatability of *N. fimbriatum* tissue (Appendix S1: Figure S2; Appendix S1: Table S20).

402

403 **Discussion**

404 Our study indicates that in high latitude coastal systems, future ocean warming will decrease the 405 growth and nutritional content of certain kelps while ocean acidification will primarily drive 406 changes in species' carbon use strategy. We also found that kelps' responses to future shifts in 407 temperature and carbonate chemistry will depend on the seasonal environmental context, 408 including the relative availability of light and nutrients in each season. Furthermore, these 409 overlapping environmental drivers may indirectly affect higher order consumers via changes to 410 seaweed palatability in certain seasons. Given the inherent differences in distributions, life

411	histories, and annual production dynamics among the subtidal kelps in this study (Bell &
412	Kroeker, 2022; Dankworth et al., 2020; Schiel & Foster, 2015), we were unsurprised to find that
413	seasonal scenarios of ocean warming and acidification elicited distinct responses in each
414	macroalgal species. This research demonstrates that changing environmental conditions will shift
415	the seasonal quality and quantity of basal resources in kelp ecosystems at high latitudes, likely
416	reducing the functional biodiversity of these communities (Schlenger et al., 2021). Prior research
417	in this system identified that future winter seasons may represent a period of vulnerability for
418	calcified consumers, due to the overlap of enhanced physiological stress from low pH/high pCO_2
419	seawater at a time when macroalgal food supply is naturally at an annual minimum (Bell &
420	Kroeker, 2022; Kroeker et al., 2021). Our research expands this projection by revealing that
421	consumers' stress in future winters may be compounded by pronounced reductions in macroalgal
422	biomass and nutritional content primarily due to warming in this season.
423	Of the three kelps we considered, the high latitude endemic H. nigripes was the only species to
424	exhibit reduced growth under ocean warming scenarios in both winter and summer experiments.
425	Optimal temperatures for growth and gametogenesis in this species have been shown to occur at
426	\leq 10°C and decline above 15°C (Druehl, 1967; Franke et al., 2021; Longtin & Saunders, 2016).
427	Indeed, current in situ productivity of <i>H. nigripes</i> declines dramatically starting in August in
428	Sitka Sound (Bell & Kroeker, 2022), and our sensor data reveal this is just as seawater
429	temperatures approach 15°C. Elevated temperatures in summer with ocean warming are likely to
430	extend this seasonal period of reduced growth for <i>H. nigripes</i> in the future. Additionally, <i>H.</i>
431	nigripes' low growth in the winter experiment under a future OW scenario of 11°C suggests that
432	other environmental variables such as relative light availability and nutrient supply may interact
433	with temperature to define this species' seasonal thermal optima.

434 Distinct from *H. nigripes*, growth of the other two, more temperate, kelp species was not 435 vulnerable to the elevated temperatures expected in future winters. The understory kelp N. 436 fimbriatum displayed reduced growth only under summer OW conditions. In Sitka Sound, 437 growth of N. fimbriatum thalli is observed year-round, although blade extension rates are 438 generally higher in summer than winter (Bell & Kroeker, 2022). While future summer OW 439 conditions may challenge the thermal tolerance of this species during the warmest months of the 440 year, its capacity for continuous production in this system could buffer a reduction in its growth 441 in this particular season. Growth of the giant kelp *M. pyrifera* was unaffected by OW scenarios 442 in either seasonal experiment, suggesting that production of this species may be resilient to 443 future warming during future winter and summers at high latitudes. Sitka Sound is situated at the 444 poleward edge of *M. pyrifera*'s continuous range extent (Druehl, 1970, 1981). Although 445 intrapopulation variation in thermal tolerance has been observed in this species (Hollarsmith et 446 al., 2020), these northern fringing *M. pyrifera* populations may possess enough phenotypic 447 plasticity to afford a relative tolerance to anticipated OW conditions in this region (Becheler et 448 al., 2022; King et al., 2020).

449 In contrast to the species-specific responses of growth rate to future environmental conditions, all 450 three kelps in this study exhibited reduced tissue nitrogen content under winter scenarios of 451 ocean warming. Currently in Sitka Sound, kelp nitrogen content increases in winter due to the 452 ample seawater nutrient supply and low energetic requirements during this season of low light 453 and low temperature (Bell & Kroeker, 2022). While the energetic expense of nutrient acquisition 454 can be limited by low light levels (Hurd et al., 2014; Roleda & Hurd, 2019), some kelps, 455 including *H. nigripes* and *M. pyrifera*, readily uptake nitrate at equal or higher rates in the dark 456 compared to the light by mobilizing carbohydrate reserves (Harrison et al., 1986; Korb &

457 Gerard, 2000; Wheeler & Srivastava, 1984). However, the additional metabolic demand for 458 nutrients that can occur under elevated temperatures may undermine these kelps' ability to 459 maintain nitrogen reserves in their tissues even when nutrients are replete, as has been seen in 460 temperate and Arctic populations of Saccharina latissima (Olischläger et al., 2014). Our results 461 underscore the unexpected vulnerability of these high latitude kelps to nutritional depletion 462 during a season associated with plentiful nutrient supply, even when projected future winter 463 temperatures fall well within their current annual thermal range. 464 Seasonal differences in OW's impact on kelp nitrogen content likely arise from an interaction 465 between environmental nutrient supply, temperature, and light on kelps' nitrogen uptake kinetics 466 and usage (Endo et al., 2017; Mabin et al., 2019). As far as we are aware, there are few other 467 studies that have considered the impact of OW on kelp nutritional content specifically under 468 winter conditions of high nutrients combined with temperatures on the lower end of species' 469 annual thermal range. More commonly, prior research has been set up similar to our summer 470 experiment and reflect our results for *H. nigripes* and *M. pyrifera* in these conditions: OW 471 treatments are chosen to exceed kelps' annual thermal maxima under low to moderate nitrogen 472 concentrations (0.5-3 uM NOx), and these scenarios have no impact on kelp tissue nitrogen 473 content (e.g., Brown et al., 2014; Mabin et al., 2019). Yet, we find it surprising that summer OW 474 conditions had no effect on any of *M. pyrifera*'s measured physiological responses, given the 475 documented vulnerability of this species to high temperature and low nutrient conditions in other 476 studies (Schmid et al., 2020; Umanzor et al., 2021). We suspect that the results of our summer 477 experiment may have been unintentionally influenced by a supplemental supply of nutrients to 478 our system. The intake for our experimental system drew seawater just offshore from a natural 479 river mouth, which was distinguished by an accumulation of decomposing salmon carcasses

21

480	during the second half of our summer experiment. We believe the concentrated outflow of
481	nutrients from these fish in river water (authors' unpublished data) was picked up by our
482	system's intake, leading to elevated ammonium concentrations in our aquaria compared to
483	typical summer seawater nutrient concentrations in situ (Bell & Kroeker, 2022, and this study).
484	We also interpret that the higher mean tissue nitrogen content of the kelps grown in these aquaria
485	compared to observed nitrogen content of kelps at this time of year in situ (Bell & Kroeker,
486	2022) reflects how readily the macroalgae assimilated this supply of ammonium (Cedeno et al.,
487	2021; Hurd et al., 2014). Therefore, the apparent resilience of kelps in our study to summer heat
488	stress may have been due to the added heat tolerance conferred by having relatively high
489	nitrogen reserves (Fernández et al., 2020; Gerard, 1997; Schmid et al., 2020). We anticipate that
490	under a more realistic simulation of seasonal environmental nutrient depletion, the negative
491	effects of OW on kelp physiology may have been more pronounced in future summer scenarios.
492	Subtidal kelps can experience substantial fluctuations in light that were not captured in this
493	experiment. Many high latitude seaweeds' photosynthesis saturation points occur at much higher
494	irradiances than are required for growth, enabling these species to capitalize on enhanced carbon
495	assimilation under large fluctuations in light (Gómez et al., 2009; Scheschonk et al., 2019;
496	Wiencke et al., 2009). Thus, the lack of variability in our light levels might have contributed to
497	the lower growth rates observed for <i>H. nigripes</i> in the winter experiment compared to a field
498	setting (Bell & Kroeker, 2022). Moreover, a greater supply of light could improve H. nigripes'
499	resilience to elevated temperatures in winter (Andersen et al., 2013; Nejrup et al., 2013). In view
500	of the potential consequences that reduced H. nigripes biomass could represent for consumers in
501	future winters, we advise further research into the interactive effects of light availability and OW
502	on this species' production.

22

503	The clear response of all three kelp species' δ^{13} C values to OA conditions suggests that these
504	kelps capitalize on enhanced CO ₂ availability to optimize their carbon acquisition strategies.
505	Presumably, the reduced $\delta^{13}C$ values indicate a downregulation of carbon concentrating activity
506	with concomitant energetic savings (Cornwall et al., 2012, 2015; Hepburn et al., 2011).
507	However, this spare energy did not appear to be consistently invested into new growth, except
508	perhaps by ameliorating the negative impacts of OW on <i>H. nigripes</i> growth under winter
509	conditions. In <i>M. pyrifera</i> , an increase in tissue nitrogen content under winter OA conditions
510	indicates that this extra energy may have been mobilized to enhance nutrient uptake and
511	assimilation. Intriguingly, this effect compensated for reduced nitrogen content under elevated
512	winter temperatures when the two treatments were applied in tandem, suggesting a mitigating
513	effect of OA on <i>M. pyrifera</i> 's nitrogen utilization in warmer future winters. Aside from these
514	results, it is unclear whether the potential energetic benefits of OA conditions may lead to other
515	ecologically consequential changes for these kelp species.
516	Our results also suggest that the combination of OW and OA may have biochemical effects on
517	algal palatability beyond what we considered in our study. The increase in urchins' consumption
518	of <i>H. nigripes</i> tissue grown in future summer ocean conditions could indicate a decrease in
519	secondary metabolites, causing the algae to be more susceptible to grazing (Arnold et al., 2012;
520	Hemmi & Jormalainen, 2002; Swanson & Fox, 2007). Increased grazing could also result from a
521	decrease in nutritional quality in the seaweed blade, causing compensatory feeding (Cruz-Rivera
522	& Hay, 2000; L. Falkenberg et al., 2014; Rodríguez et al., 2018). While we did not observe an
523	effect of summer OA and OW on H. nigripes' nitrogen content, reduced nutritional value could
524	also be driven by a decrease in fatty acid, lipid, or mineral content (Britton et al., 2020; Zhang et
525	al., 2021). Our feeding assay results only begin to hint at the additional effects that OA and OW

may have on macroalgal physiochemical structure, and they reinforce the importance of testing
the emergent effects of environmental change on food web interactions (Jin et al., 2020; Jin &
Gao, 2021).

529 Altogether, our experimental results for these three common canopy-forming subtidal kelp 530 species paint a picture of how the macroalgal energy supply in this system may shift in the 531 future. Our finding that future warming had a greater impact than ocean acidification on the 532 growth and nutritional quality of high latitude kelps is consistent with studies of macroalgae in 533 other high latitude and subtropical habitats (Graba-Landry et al., 2018; Wahl et al., 2020). The 534 vulnerability of the pan-Arctic understory species *H. nigripes* is particularly noteworthy. In the 535 winter, the reduction of both the biomass and quality of this species could represent an 536 energetically devastating loss for calcified rocky reef consumers facing additional metabolic 537 stress associated with OA in the future (Kroeker et al., 2021). Meanwhile, high latitude 538 populations of the more temperate kelp species *M. pyrifera* may be relatively resilient to the 539 effects of OA and OW. Giant kelp may therefore continue to dominate total macroalgal 540 production on reefs where it forms the surface canopy (Bell & Kroeker, 2022). However, 541 consumers cannot rely on this species alone to fulfill their nutritional needs (Kroeker et al., 542 2021). Thus, the combination of OA and OW threatens not only the functional biodiversity of the 543 macroalgal community on these high latitude reefs, but also the resilience of the consumer 544 community that depends on their production.

545

546 Acknowledgements

547 This research took place within Lingít Aaní, or Tlingit land, near Sheet'ká Kwáan, also known as
548 Sitka, Alaska. We acknowledge and understand that our work is dependent on the land and

24

549	waters that Lingi 't Peoples have stewarded since time immemorial, and we are grateful to be
550	guests in this region. We thank the staff of the Sitka Sound Science Center for their assistance.
551	We thank B. Conaway, C. Gray, P. Sorenson, L. Wild, P. Cook, T. White, L. Strope, J. Gómez,
552	M. Schouweiler, G. Houghton, and UCSC students in the 2020 Sitka field course for assistance
553	in the field and laboratory. S. Lummis went above and beyond to help keep our experiments
554	running, and B. Walker generously analyzed many of our discrete samples. E. Donham, Y.
555	Takeshita, and W. Evans provided invaluable advice and assistance in sensor troubleshooting,
556	sample processing, and data analysis. We deeply appreciate everyone who supported this work.
557	
558	Conflict of Interest Statement
559	The authors have no conflicts of interest to declare.
560	
561	References
562	Ainsworth, E. A., and S. P. Long. 2004. "What Have We Learned From 15 Years of Free-Air
563	CO ₂ Enrichment (FACE)? A Meta-Analytic Review of The Responses of Photosynthesis,
564	Canopy Properties and Plant Production To Rising CO ₂ ." New Phytologist 165:351–372.
565	https://doi.org/10.1111/j.1469-8137.2004.01224.x
566	Amsler, C. D., K. Iken, J. B. McClintock, M. O. Amsler, K. J. Peters, J. M. Hubbard, F. B.
567	Furrow, and B. J. Baker. 2005. "Comprehensive Evaluation of the Palatability and
568	Chemical Defenses of Subtidal Macroalgae from the Antarctic Peninsula." Marine

570	Andersen, G. S., M. F. Pedersen, and S. L. Nielsen. 2013. "Temperature Acclimation and Heat
571	Tolerance of Photosynthesis in Norwegian Saccharina latissima (Laminariales,
572	Phaeophyceae)." Journal of Phycology 49:689-700. https://doi.org/10.1111/jpy.12077
573	Arnold, T., C. Mealey, H. Leahey, A. W. Miller, J. M. Hall-Spencer, M. Milazzo, and K. Maers.
574	2012. "Ocean Acidification and the Loss of Phenolic Substances in Marine Plants." PLoS
575	ONE 7(4):e35107. https://doi.org/10.1371/journal.pone.0035107
576	Becheler, R., D. Haverbeck, C. Clerc, G. Montecinos, M. Valero, A. Mansilla, and S. Faugeron.
577	2022. "Variation in Thermal Tolerance of the Giant Kelp's Gametophytes: Suitability of
578	Habitat, Population Quality or Local Adaptation?" Frontiers in Marine Science
579	9:802535. https://doi.org/10.3389/fmars.2022.802535
580	Bell, L. E., J. B. Gómez, E. Donham, D. L. Steller, P. W. Gabrielson, and K. J. Kroeker. 2022.
581	"High-Latitude Calcified Coralline Algae Exhibit Seasonal Vulnerability to Acidification
582	Despite Physical Proximity to a Non-Calcified Alga." Climate Change Ecology
583	3:100049. https://doi.org/10.1016/j.ecochg.2022.100049
584	Bell, L. E., and K. J. Kroeker. 2022. "Standing Crop, Turnover, and Production Dynamics of
585	Macrocystis pyrifera and Understory Species Hedophyllum nigripes and Neoagarum
586	fimbriatum in High Latitude Giant Kelp Forests." Journal of Phycology 58(6):773–788.
587	https://doi.org/10.1111/jpy.13291
588	Britton, D., M. Schmid, F. Noisette, J. N. Havenhand, E. R. Paine, C. M. McGraw, A. T. Revill,
589	P. Virtue, P. D. Nichols, C. N. Mundy, and C. L. Hurd. 2020. "Adjustments in Fatty Acid
590	Composition is a Mechanism that Can Explain Resilience to Marine Heatwaves and
591	Future Ocean Conditions in the Habitat-Forming Seaweed Phyllospora comosa

- 592 (Labillardière) C.Agardh." *Global Change Biology* 26(6):3512–3524.
- 593 https://doi.org/10.1111/gcb.15052
- 594 Brown, M. B., M. S. Edwards, and K. Y. Kim. 2014. "Effects of Climate Change on the
- 595 Physiology of Giant Kelp, *Macrocystis pyrifera*, and Grazing by Purple Urchin,
- 596 *Strongylocentrotus purpuratus.*" *Algae* 29(3):203–215.
- 597 http://dx.doi.org/10.4490/algae.2014.29.3.203
- 598 Campanyà-Llovet, N., P. V. R. Snelgrove, and C. C. Parrish. 2017. "Rethinking the Importance
- 599 of Food Quality in Marine Benthic Food Webs." *Progress in Oceanography* 156:240–
- 600 251. https://doi.org/10.1016/j.pocean.2017.07.006
- 601 Cavicchioli, R., W. J. Ripple, K. N. Timmis, F. Azam, L. R. Bakken, M. Baylis, M. J.
- 602 Behrenfeld, A. Boetius, P. W. Boyd, A. T. Classen, T. W. Crowther, R. Danovaro, C. M.
- 603 Foreman, J. Huisman, D. A. Hutchins, J. K. Jansson, D. M. Karl, B. Koskella, D. B. Mark
- Welch, J. B. H. Martiny, M. A. Moran, V. J. Orphan, D. S. Reay, J. V. Remais, V. I.
- 605 Rich, B. K. Singh, L. Y. Stein, F. J. Stewart, M. B. Sullivan, M. J. H. van Oppen, S. C.
- 606 Weaver, E. A. Webb, and N. S. Webster. 2019. "Scientists' Warning to Humanity:
- 607 Microorganisms and Climate Change." *Nature Reviews Microbiology* 17:569–586.
- 608 https://doi.org/10.1038/s41579-019-0222-5
- 609 Cebrian, J., J. B. Shurin, E. T. Borer, B. J. Cardinale, J. T. Ngai, M. D. Smith, and W. F. Fagan.
- 610 2009. "Producer Nutritional Quality Controls Ecosystem Trophic Structure." *PLoS ONE*611 4(3):e4929. https://doi.org/10.1371/journal.pone.0004929
- 612 Cedeno, T. H., M. A. Brzezinski, R. J. Miller, and D. C. Reed. 2021. "An Evaluation of Surge
- 613 Uptake Capability in the Giant Kelp (*Macrocystis pyrifera*) in Response to Pulses of

- 614 Three Different Forms of Nitrogen." *Marine Biology* 168(11):166.
- 615 https://doi.org/10.1007/s00227-021-03975-z
- 616 Celis-Plá, P. S. M., J. M. Hall-Spencer, P. A. Horta, M. Milazzo, N. Korbee, C. E. Cornwall, and
- 617 F. L. Figueroa. 2015. "Macroalgal Responses to Ocean Acidification Depend on Nutrient
- 618 and Light Levels." *Frontiers in Marine Science* 2:26.
- 619 https://doi.org/10.3389/fmars.2015.00026
- 620 Cornwall, C. E., C. D. Hepburn, D. Pritchard, K. I. Currie, C. M. McGraw, K. A. Hunter, and C.
- 621 L. Hurd, C. L. 2012. "Carbon-Use Strategies in Macroalgae: Differential Responses to
- 622 Lowered pH and Implications for Ocean Acidification." Journal of Phycology 48(1):137–
- 623 144. https://doi.org/10.1111/j.1529-8817.2011.01085.x
- 624 Cornwall, C. E., and C. L. Hurd. 2016. "Experimental Design in Ocean Acidification Research:
 625 Problems and Solutions." *ICES Journal of Marine Science* 73(3):572–581.
- 626 https://doi.org/10.1093/icesjms/fsv118
- 627 Cornwall, C. E., A. T. Revill, and C. L. Hurd. 2015. "High Prevalence of Diffusive Uptake of
- 628 CO₂ by Macroalgae in a Temperate Subtidal Ecosystem." *Photosynthesis Research*
- 629 124(2):181–190. https://doi.org/10.1007/s11120-015-0114-0
- 630 Cruz-Rivera, E., and M. E. Hay. 2000. "Can Quantity Replace Quality? Food Choice,
- 631 Compensatory Feeding, and Fitness of Marine Mesograzers." *Ecology* 81(1):201–219.
- 632 https://doi.org/10.2307/177144
- 633 Dankworth, M., S. Heinrich, S. Fredriksen, and I. Bartsch. 2020. "DNA Barcoding and Mucilage
- 634 Ducts in the Stipe Reveal the Presence of *Hedophyllum nigripes* (Laminariales,
- 635 Phaeophyceae) in Kongsfjorden (Spitsbergen)." *Journal of Phycology* 56(5):1245–1254.
- 636 https://doi.org/10.1111/jpy.13012

- 637 Demko, A. M., C. D. Amsler, M. E. Hay, J. D. Long, J. B. McClintock, V. J. Paul, and E. E.
- 638 Sotka. 2017. "Declines in Plant Palatability from Polar to Tropical Latitudes Depend on
- 639 Herbivore and Plant Identity." *Ecology* 98(9):2312–2321.
- 640 https://doi.org/10.1002/ecy.1918
- Dickson, A. G. 1993. "pH Buffers for Sea Water Media Based on the Total Hydrogen Ion
- 642 Concentration Scale." *Deep Sea Research Part I: Oceanographic Research Papers*
- 643 40(1):107–118. https://doi.org/10.1016/0967-0637(93)90055-8
- 644 Dickson, A. G., and F. J. Millero. 1987. "A Comparison of the Equilibrium Constants for the
- 645 Dissociation of Carbonic Acid in Seawater Media." *Deep Sea Research Part A* 34:1733–
- 646 1743. https://doi.org/10.1016/01980149(87)90021-5
- Dickson, A. G., C. L. Sabine, and J. R. Christian. 2007. "Guide to Best Practices for Ocean CO₂
 Measurements." In: *PICES Special Publication 3*.
- 649 Doubleday, Z. A., I. Nagelkerken, M. D. Coutts, S. U. Goldenberg, and S. D. Connell. 2019. "A
- 650 Triple Trophic Boost: How Carbon Emissions Indirectly Change a Marine Food Chain."
- 651 Global Change Biology 25(3):978–984. https://doi.org/10.1111/gcb.14536
- 652 Druehl, L. D. 1967. "Distribution of Two Species of Laminaria as Related to Some

653 Environmental Factors." *Journal of Phycology* 3(2):103–108.

- 654 https://doi.org/10.1111/j.1529-8817.1967.tb04641.x
- 655 Druehl, L. D. 1970. "The Pattern of Laminariales Distribution in the Northeast Pacific."

656 *Phycologia* 9:237–247. https://doi.org/10.2216/i0031-8884-9-3-237.1

- Druehl, L. D. 1981. "Geographic Distribution." Pages 306–325 in C. R. Lobban, and M. J.
- 658 Wynne, editors. *The Biology of Seaweeds, vol. 17.* University of California Press.

\mathcal{O}	659	Duarte.	C., J. Ló	pez. S.	Benítez.	P. H.	. Manría	uez. J. N	I. Navarro	. C.	C. Bonta	. R. Torres	and .
---------------	-----	---------	-----------	---------	----------	-------	----------	-----------	------------	------	----------	-------------	-------

- 660 Quijón. 2016. "Ocean Acidification Induces Changes in Algal Palatability and Herbivore
- 661 Feeding Behavior and Performance." *Oecologia* 180(2):453–462.
- 662 https://doi.org/10.1007/s00442-015-3459-3
- 663 Duffy, J. E., and V. J. Paul. 1992. "Prey Nutritional Quality and the Effectiveness of Chemical
- 664 Defenses Against Tropical Reef Fishes." *Oecologia* 90(3):333–339.
- 665 https://doi.org/10.1007/BF00317689
- Eggert, A. 2012. "Seaweed Responses to Temperature." In Seaweed Biology (pages 47-66),
- 667 edited by C. Wiencke, and K. Bischof. Springer, Berlin, Heidelberg.
- 668 https://doi.org/10.1007/978-3-642-28451-9_3
- Endo, H., K. Suehiro, X. Gao, and Y. Agatsuma. 2017. "Interactive Effects of Elevated Summer
 Temperature, Nutrient Availability, and Irradiance on Growth and Chemical
- 671 Compositions of Juvenile Kelp, *Eisenia bicyclis*." *Phycological Research* 65(2):118–126.
- 672 https://doi.org/10.1111/pre.12170
- Facey, S. L., D. S. Ellsworth, J. T. Staley, D. J. Wright, and S. N. Johnson. 2014. "Upsetting the
- 674 Order: How Climate and Atmospheric Change Affects Herbivore–Enemy Interactions."
- 675 *Current Opinion in Insect Science* 5:66–74. https://doi.org/10.1016/j.cois.2014.09.015
- 676 Falkenberg, L. J., S. D. Connell, and B. D. Russell. 2014. "Herbivory Mediates the Expansion of
- an Algal Habitat Under Nutrient and CO₂ Enrichment." *Marine Ecology Progress Series*497:87–92. https://doi.org/10.3354/meps10557
- 679 Falkenberg, L. J., B. D. Russell, and S. D. Connell. 2013. "Future Herbivory: The Indirect
- 680 Effects of Enriched CO₂ May Rival its Direct Effects." *Marine Ecology Progress Series*
- 681 492:85–95. https://doi.org/10.3354/meps10491

682	Fernández, P. A., J. D. Gaitán-Espitia, P. P. Leal, M. Schmid, A. T. Revill, and C. L. Hurd. 2020.
683	"Nitrogen Sufficiency Enhances Thermal Tolerance in Habitat-Forming Kelp:
684	Implications for Acclimation Under Thermal Stress." Scientific Reports 10:3186.
685	https://doi.org/10.1038/s41598-020-60104-4
686	Franke, K., D. Liesner, S. Heesch, and I. Bartsch. 2021. "Looks Can Be Deceiving: Contrasting
687	Temperature Characteristics of Two Morphologically Similar Kelp Species Co-Occurring
688	in the Arctic." Botanica Marina 64(3):163–175. https://doi.org/10.1515/bot-2021-0014
689	Franklin, J., J. M. Serra-Diaz, A. D. Syphard, and H. M. Regan. 2016. "Global Change and
690	Terrestrial Plant Community Dynamics." Proceedings of the National Academy of
691	Sciences 113(14):3725–3734. https://doi.org/10.1073/pnas.1519911113
692	Gerard, V. A. 1997. "The Role of Nitrogen Nutrition in High-Temperature Tolerance of the
693	Kelp, Laminaria saccharina (Chromophyta)." Journal of Phycology 33(5):800-810.
694	https://doi.org/10.1111/j.0022-3646.1997.00800.x
695	Gilbert, B., A. S. MacDougall, T. Kadoya, M. Akasaka, J. R. Bennett, E. M. Lind, H. Flores-
696	Moreno, J. Firn, Y. Hautier, E. T. Borer, E. W. Seabloom, P. B. Adler, E. E. Cleland, J.
697	B. Grace, W. S. Harpole, E. H. Esch, J. L. Moore, J. Knops, R. McCulley, B. Mortensen,
698	J. Bakker, P. A. Fay. 2020. "Climate and Local Environment Structure Asynchrony and
699	the Stability of Primary Production in Grasslands." Global Ecology and Biogeography
700	29(7):1177-1188. https://doi.org/10.1111/geb.13094
701	Gómez, I., A. Wulff, M. Y. Roleda, P. Huovinen, U. Karsten, M. L. Quartino, K. Dunton, and C.
702	Wiencke. 2009. "Light and Temperature Demands of Marine Benthic Microalgae and
703	Seaweeds in Polar Regions." Botanica Marina 52(6):593-608.
704	https://doi.org/10.1515/BOT.2009.073

705	Graba-Landry, A., A. S. Hoey, J. K. Matley, H. Sheppard-Brennand, A. G. B. Poore, M. Byrne,
706	and S. A. Dworjanyn. 2018. "Ocean Warming Has Greater and More Consistent Negative
707	Effects than Ocean Acidification on the Growth and Health of Subtropical Macroalgae."
708	Marine Ecology Progress Series 595:55-69. https://doi.org/10.3354/meps12552
709	Graham, M. H. 2004. "Effects of Local Deforestation on the Diversity and Structure of Southern
710	California Giant Kelp Forest Food Webs." Ecosystems 7:341-357.
711	https://doi.org/10.1007/s10021-003-0245-6
712	Graiff, A., I. Bartsch, W. Ruth, M. Wahl, and U. Karsten. 2015. "Season Exerts Differential
713	Effects of Ocean Acidification and Warming on Growth and Carbon Metabolism of the
714	Seaweed Fucus vesiculosus in the Western Baltic Sea." Frontiers in Marine Science
715	2:112. https://doi.org/10.3389/fmars.2015.00112
716	Granado, I., and P. Caballero. 2001. "Feeding Rates of Littorina striata and Osilinus atratus in
717	Relation to Nutritional Quality and Chemical Defenses of Seaweeds." Marine Biology
718	138(6):1213-1224. https://doi.org/10.1007/s002270100544
719	Grant, W. S., A. Lydon, and T. T. Bringloe. 2020. "Phylogeography of Split Kelp Hedophyllum
720	nigripes: Northern Ice-Age Refugia and Trans-Arctic Dispersal." Polar Biology 43:1829-
721	1841. https://doi.org/10.1007/s00300-020-02748-6
722	Gunderson, A. R., E. J. Armstrong, and J. H. Stillman. 2016. "Multiple Stressors in a Changing
723	World: The Need For an Improved Perspective on Physiological Responses to the
724	Dynamic Marine Environment." Annual Review of Marine Science 8(1):357–378.
725	https://doi.org/10.1146/annurev-marine-122414-033953
726	Harley, C. D. G., K. M. Anderson, K. W. Demes, J. P. Jorve, R. L. Kordas, T. A. Coyle, and M.
727	H. Graham. 2012. "Effects of Climate Change on Global Seaweed Communities."

728	Journal of Phycology 48(5):1064-1078. https://doi.org/10.1111/j.1529-
729	8817.2012.01224.x
730	Harley, C. D. G., S. D. Connell, Z. A. Doubleday, B. Kelaher, B. D. Russell, G. Sarà, and B.
731	Helmuth. 2017. "Conceptualizing Ecosystem Tipping Points Within a Physiological
732	Framework." Ecology and Evolution 7(15):6035-6045. https://doi.org/10.1002/ece3.3164
733	Harrison, P. J., L. D. Druehl, K. E. Lloyd, and P. A. Thompson. 1986. "Nitrogen Uptake Kinetics
734	in Three Year-Classes of Laminaria groenlandica (Laminariales: Phaeophyta)." Marine
735	Biology 93(1):29-35. https://doi.org/10.1007/BF00428652
736	Hay, M. E., Q. E. Kappel, and W. Fenical. 1994. "Synergisms in Plant Defenses Against
737	Herbivores: Interactions of Chemistry, Calcification, and Plant Quality." Ecology
738	75(6):1714–1726. https://doi.org/10.2307/1939631
739	Hemmi, A., and V. Jormalainen. 2002. "Nutrient Enhancement Increases Performance of a
740	Marine Herbivore via Quality of its Food Alga." <i>Ecology</i> 83:1052–1064.
741	https://doi.org/10.2307/3071913
742	Hepburn, C. D., D. W. Pritchard, C. E. Cornwall, R. J. McLeod, J. Beardall, J. A. Raven, and C.
743	L. Hurd. 2011. "Diversity of Carbon Use Strategies in a Kelp Forest Community:
744	Implications for a High CO ₂ Ocean." <i>Global Change Biology</i> 17(7):2488–2497.
745	https://doi.org/10.1111/j.1365-2486.2011.02411.x
746	Hermann, A. J., S. Hinckley, E. L. Dobbins, D. B. Haidvogel, N. A. Bond, C. Mordy, N. Kachel,
747	and P. J. Stabeno. 2009. "Quantifying Cross-Shelf and Vertical Nutrient Flux in the
748	Coastal Gulf of Alaska with a Spatially Nested, Coupled Biophysical Model." Deep Sea
749	Research Part II: Topical Studies in Oceanography 56(24):2474–2486.
750	https://doi.org/10.1016/j.dsr2.2009.02.008

751	Hillebrand, H., B. Worm, and H. K Lotze. 2000. "Marine Microbenthic Community Structure				
752	Regulated by Nitrogen Loading and Grazing Pressure." Marine Ecology Progress Seri				
753	204:27-38. https://doi.org/10.3354/meps204027				
754	Hollarsmith, J. A., A. H. Buschmann, C. Camus, and E. D. Grosholz. 2020. "Varying				
755	Reproductive Success under Ocean Warming and Acidification across Giant Kelp				
756	(Macrocystis pyrifera) Populations." Journal of Experimental Marine Biology and				
757	Ecology 522:151247. https://doi.org/10.1016/j.jembe.2019.151247				
758	Hood, E., and D. Scott. 2008. "Riverine Organic Matter and Nutrients in Southeast Alaska				
759	Affected by Glacial Coverage." Nature Geoscience 1(9):583-587.				
760	https://doi.org/10.1038/ngeo280				
761	Hurd, C. L., J. Beardall, S. Comeau, C. E. Cornwall, J. N. Havenhand, P. L. Munday, L. M.				
762	Parker, J. A. Raven, and C. M. McGraw. 2020. "Ocean Acidification as a Multiple				
763	Driver: How Interactions Between Changing Seawater Carbonate Parameters Affect				
764	Marine Life." Marine and Freshwater Research 71(3):263.				
765	https://doi.org/10.1071/MF19267				
766	Hurd, C. L., P. J. Harrison, K. Bischof, and C. S. Lobban. 2014. Seaweed Ecology and				
767	Physiology, 2 nd Ed. Cambridge and New York: Cambridge University Press.				
768	IPCC. 2018. "Summary for Policymakers." In Global Warming of 1.5°C. An IPCC Special				
769	Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and				
770	Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the				
771	Global Response to the Threat of Climate Change, Sustainable Development, and Efforts				
772	to Eradicate Poverty, edited by V. Masson-Delmotte, P. Zhai, HO. Pörtner, D. Roberts,				
773	J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.				

774	B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and
775	T. Waterfield. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
776	Jenckes, J., D. E. Ibarra, and L. A. Munk. 2022. "Concentration-Discharge Patterns Across the
777	Gulf of Alaska Reveal Geomorphological and Glacierization Controls on Stream Water
778	Solute Generation and Export." Geophysical Research Letters 49:e2021GL095152.
779	http://doi.org/10.1029/2021GL095152
780	Jin, P., and K. Gao. 2021. "Effects of Ocean Acidification on Marine Primary Producers and
781	Related Ecological Processes under Multiple Stressors." In Anthropogenic Pollution of
782	Aquatic Ecosystems (pages 401–426), edited by DP. Häder, E. W. Helbling, and V. E.
783	Villafañe. Springer International Publishing. https://doi.org/10.1007/978-3-030-75602-
784	4_18
785	Jin, P., D. A. Hutchins, and K. Gao. 2020. "The Impacts of Ocean Acidification on Marine Food
786	Quality and its Potential Food Chain Consequences." Frontiers in Marine Science
787	7:543979. https://doi.org/10.3389/fmars.2020.543979
788	King, N. G., P. J. Moore, A. Pessarrodona, M. T. Burrows, J. Porter, M. Bue, and D. A. Smale.
789	2020. "Ecological Performance Differs Between Range Centre and Trailing Edge
790	Populations of a Cold-Water Kelp: Implications for Estimating Net Primary
791	Productivity." Marine Biology 167(9):137. https://doi.org/10.1007/s00227-020-03743-5
792	King, N. G., N. J. McKeown, D. A. Smale, and P. J. Moore. 2017. "The Importance of
793	Phenotypic Plasticity and Local Adaptation in Driving Intraspecific Variability in
794	Thermal Niches of Marine Macrophytes." <i>Ecography</i> 41(9):1469–1484.
795	https://doi.org/10.1111/ecog.03186

796	Koch, M., G. Bowes, C. Ross, and XH. Zhang. 2013. "Climate Change and Ocean
797	Acidification Effects on Seagrasses and Marine Macroalgae." Global Change Biology
798	19(1):103-132. https://doi.org/10.1111/j.1365-2486.2012.02791.x
799	Korb, R. E., and V. A. Gerard. 2000. "Effects of Concurrent Low Temperature and Low
800	Nitrogen Supply on Polar and Temperate Seaweeds." Marine Ecology Progress Series
801	198:73-82. https://doi.org/10.3354/meps198073
802	Kram, S. L., N. N. Price, E. M. Donham, M. D. Johnson, E. L. A. Kelly, S. L. Hamilton, and J.
803	E. Smith. 2016. "Variable Responses of Temperate Calcified and Fleshy Macroalgae to
804	Elevated pCO ₂ and Warming." <i>ICES Journal of Marine Science</i> 73(3):693–703.
805	https://doi.org/10.1093/icesjms/fsv168
806	Kroeker, K. J., L. E. Bell, E. M. Donham, U. Hoshijima, S. Lummis, J. A. Toy, and E.
807	Willis-Norton. 2020. "Ecological Change in Dynamic Environments: Accounting for
808	Temporal Environmental Variability in Studies of Ocean Change Biology." Global
809	Change Biology 26(1):54-67. https://doi.org/10.1111/gcb.14868
810	Kroeker, K. J., C. Powell, and E. M. Donham. 2021. "Windows of Vulnerability: Seasonal
811	Mismatches in Exposure and Resource Identity Determine Ocean Acidification's Effect
812	on a Primary Consumer at High Latitude." Global Change Biology 27(5):1042–1051.
813	https://doi.org/10.1111/gcb.15449
814	Kumar, A., H. AbdElgawad, I. Castellano, S. Selim, G. T. S. Beemster, H. Asard, M. C. Buia,
815	and A. Palumbo. 2018. "Effects of Ocean Acidification on the Levels of Primary and
816	Secondary Metabolites in the Brown Macroalga Sargassum vulgare at Different Time
817	Scales." Science of The Total Environment 643:946–956.
818	https://doi.org/10.1016/j.scitotenv.2018.06.176
819	Ladah, L. B., and J. A. Zertuche-González. 2022. "Local Adaptation of Juvenile Giant Kelp,
-----	--
820	Macrocystis pyrifera, from their Southern Limit in the Northern Hemisphere Explored
821	Using Reciprocal Transplantation." European Journal of Phycology 57(3):357-366.
822	https://doi.org/10.1080/09670262.2021.2007543
823	Lewis, E. R., and D. W. R. Wallace. 1998. Program Developed for CO ₂ System Calculations.
824	Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy
825	Research Corporation for the U.S. Department of Energy: Tennessee.
826	https://doi.org/10.15485/1464255
827	
828	Liu, H., Z. Mi, L. Lin, Y. Wang, Z. Zhang, F. Zhang, H. Wang, L. Liu, B. Zhu, G. Cao, X. Zhao,
829	N. J. Sanders, A. T. Classen, P. B. Reich, and JS. He. 2018. "Shifting Plant Species
830	Composition in Response to Climate Change Stabilizes Grassland Primary Production."
831	Proceedings of the National Academy of Sciences 115(16):4051–4056.
832	https://doi.org/10.1073/pnas.1700299114
833	Longtin, C. M., and G. W. Saunders. 2016. "The Relative Contribution of Saccharina nigripes
834	(Phaeophyceae) to the Bay of Fundy Laminariaceae: Spatial and Temporal Variability."
835	Marine Ecology Progress Series 543:153-162. https://doi.org/10.3354/meps11566
836	Lüning, K. 1993. "Environmental and Internal Control of Seasonal Growth in Seaweeds." In
837	Fourteenth International Seaweed Symposium, Developments in Hydrobiology, vol. 85
838	(pages 1-14), edited by A. R. O. Chapman, M. T. Brown, and M. Lahaye. Dordrecht:
839	Springer. https://doi.org/10.1007/978-94-011-1998-6_1

840	Mabin, C. J. T., C. R. Johnson, and J. T. Wright. 2019. "Physiological Response to Temperature,
841	Light, and Nitrates in the Giant Kelp Macrocystis pyrifera from Tasmania, Australia."
842	Marine Ecology Progress Series 614:1–19. https://doi.org/10.3354/meps12900
843	Maschler, J., L. Bialic-Murphy, J. Wan, L. C. Andresen, C. M. Zohner, P. B. Reich, A. Lüscher,
844	M. K. Schneider, C. Müller, G. Moser, J. S. Dukes, I. K. Schmidt, M. C. Bilton, K. Zhu,
845	and T. W. Crowther. 2022. "Links Across Ecological Scales: Plant Biomass Responses to
846	Elevated CO ₂ ." <i>Global Change Biology</i> 28(21):6115–6134.
847	https://doi.org/10.1111/gcb.16351
848	Mathis, J. T., S. R. Cooley, N. Lucey, S. Colt, J. Ekstrom, T. Hurst, C. Hauri, W. Evans, J. N.
849	Cross, and R. A. Feely. 2015. "Ocean Acidification Risk Assessment for Alaska's
850	Fishery Sector." Progress in Oceanography 136:71–91.
851	https://doi.org/10.1016/j.pocean.2014.07.001
852	McDevit, D. C., and G. W. Saunders. 2010. "A DNA Barcode Examination of the Laminariaceae
853	(Phaeophyceae) in Canada Reveals Novel Biogeographical and Evolutionary Insights."
854	<i>Phycologia</i> 49(3):235–248. https://doi.org/10.2216/PH09-36.1
855	Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicx. 1973. "Measurement of the
856	Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric
857	Pressure." Limnology and Oceanography 18(6):897–907.
858	https://doi.org/10.4319/lo.1973.18.6.0897
859	Nejrup, L. B., P. A. Staehr, and M. S. Thomsen. 2013. "Temperature- and Light-Dependent
860	Growth and Metabolism of the Invasive Red Algae Gracilaria vermiculophylla – a
861	Comparison with Two Native Macroalgae." European Journal of Phycology 48(3):295-
862	308. https://doi.org/10.1080/09670262.2013.830778

863	Olischläger, M., C. Iñiguez, F. J. L. Gordillo, and C. Wiencke. 2014. "Biochemical Composition
864	of Temperate and Arctic Populations of Saccharina latissima After Exposure to
865	Increased pCO ₂ and Temperature Reveals Ecotypic Variation." Planta 240(6):1213-
866	1224. https://doi.org/10.1007/s00425-014-2143-x
867	Paine, E. R., D. Britton, M. Schmid, E. A. Brewer, G. Diaz-Pulido, P. W. Boyd, and C. L. Hurd.
868	2023. "No Effect of Ocean Acidification on Growth, Photosynthesis, or Dissolved
869	Organic Carbon Release by Three Temperate Seaweeds with Different Dissolved
870	Inorganic Carbon Uptake Strategies." ICES Journal of Marine Science 0:1–10.
871	https://doi.org/10.1093/icesjms/fsac221
872	Phelps, C. M., M. C. Boyce, and M. J. Huggett. 2017. "Future Climate Change Scenarios
873	Differentially Affect Three Abundant Algal Species in Southwestern Australia." Marine
874	Environmental Research 126:69-80. https://doi.org/10.1016/j.marenvres.2017.02.008
875	Pierrot, D., E. Lewis, and D. W. R. Wallace. 2006. MS Excel program developed for CO ₂ system
876	calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak
877	Ridge National Laboratory, Oak Ridge, Tennessee: US Department of Energy.
878	Poorter, H. 1988. "Interspecific Variation in the Growth Response of Plants to an Elevated
879	Ambient CO_2 Concentration." In CO_2 and Biosphere, Advances in Vegetation Science,
880	vol. 14 (pages 77-97), edited by J. Rozema, H. Lambers, S. C. van de Geijn, and M. L.
881	Cambridge. Dordrecht: Springer. https://doi.org/10.1007/978-94-011-1797-5_6
882	R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation
883	for Statistical Computing. Retrieved from https://www.R-project.org/
884	Raven, J. A., and R. J. Geider. 1988. "Temperature and Algal Growth." New Phytologist
885	110(4):441-461. https://doi.org/10.1111/j.1469-8137.1988.tb00282.x

886	Raven, J. A., A. M. Johnston, J. E. Kübler, R. Korb, S. G. McInroy, L. L. Handley, C. M.
887	Scrimgeour, D. I. Walker, J. Beardall, M. Vanderklift, S. Fredriksen, and K. H. Dunton.
888	2002. "Mechanistic Interpretation of Carbon Isotope Discrimination by Marine
889	Macroalgae and Seagrasses." Functional Plant Biology 29(3):355-378.
890	https://doi.org/10.1071/pp01201
891	Rodríguez, A., S. Clemente, A. Brito, and J. C. Hernández. 2018. "Effects of Ocean
892	Acidification on Algae Growth and Feeding Rates of Juvenile Sea Urchins." Marine
893	Environmental Research 140:382-389. https://doi.org/10.1016/j.marenvres.2018.07.004
894	Roleda, M. Y., and C. L. Hurd. 2019. "Seaweed Nutrient Physiology: Application of Concepts to
895	Aquaculture and Bioremediation." <i>Phycologia</i> 58(5):552–562.
896	https://doi.org/10.1080/00318884.2019.1622920
897	Romero, O. E., L. J. LeVay, E. L. McClymont, J. Müller, and E. A. Cowan. 2022. "Orbital and
898	Suborbital-Scale Variations of Productivitiy and Sea Surface Conditions in the Gulf of
899	Alaska During the Past 54,000 Years: Impact of Iron Fertilization by Icebergs and
900	Meltwater." Paleoceanography and Paleoclimatology 37:e2021PA004385.
901	https://doi.org/10.1029/2021PA004385
902	Rosenblatt, A. E., and O. J. Schmitz. 2016. "Climate Change, Nutrition, and Bottom-Up and
903	Top-Down Food Web Processes." Trends in Ecology and Evolution 31(12):965–975.
904	https://doi.org/10.1016/j.tree.2016.09.009
905	Russell, B. D., and S. D. Connell. 2007. "Response of Grazers to Sudden Nutrient Pulses in
906	Oligotrophic Versus Eutrophic Conditions." Marine Ecology Progress Series 349:73-80.
907	https://doi.org/10.3354/meps07097

- 908 Scheschonk, L., S. Becker, J.-H. Hehemann, N. Diehl, U. Karsten, and K. Bischof. 2019. "Arctic
- 809 Kelp Eco-Physiology During the Polar Night in the Face of Global Warming: A Crucial
- 910 Role for Laminarin." *Marine Ecology Progress Series* 611:59–74.
- 911 https://doi.org/10.3354/meps12860
- 912 Schiel, D. R., and M. S. Foster. 2015. *The Biology and Ecology of Giant Kelp Forests*. Oakland:
 913 University of California Press.
- Schlenger, A. J., R. Beas-Luna, and R. F. Ambrose. 2021. "Forecasting Ocean Acidification
 Impacts on Kelp Forest Ecosystems." *PLoS ONE* 16(4):e0236218.
- 916 https://doi.org/10.1371/journal.pone.0236218
- 917 Schmid, M., P. A. Fernández, J. D. Gaitán-Espitia, P. Virtue, P. P. Leal, A. T. Revill, P. D.
- 918 Nichols, and C. L. Hurd. 2020. "Stress Due to Low Nitrate Availability Reduces the
- 919 Biochemical Acclimation Potential of the Giant Kelp *Macrocystis pyrifera* to High
- 920 Temperature." *Algal Research* 47:101895. https://doi.org/10.1016/j.algal.2020.101895
- 921 Seibold, S., M. W. Cadotte, J. S. MacIvor, S. Thorn, and J. Müller. 2018. "The Necessity of
- 922 Multitrophic Approaches in Community Ecology." *Trends in Ecology and Evolution*
- 923 33(10):754–764. https://doi.org/10.1016/j.tree.2018.07.001
- 924 Steinberg, P. D. 1985. "Feeding Preferences of *Tegula funebralis* and Chemical Defenses of
- 925 Marine Brown Algae." *Ecological Monographs* 55(3):333–349.
- 926 https://doi.org/10.2307/1942581
- 927 Swanson, A. K., and C. H. Fox. 2007. "Altered Kelp (Laminariales) Phlorotannins and Growth
- 928 Under Elevated Carbon Dioxide and Ultraviolet-B Treatments Can Influence Associated
- 929 Intertidal Food Webs." *Global Change Biology* 13(8):1696–1709.
- 930 https://doi.org/10.1111/j.1365-2486.2007.01384.x

931	Sydeman, W. J., and S. J. Bograd. 2009. "Marine Ecosystems, Climate and Phenology:
932	Introduction." Marine Ecology Progress Series 393:185–188.
933	https://doi.org/10.3354/meps08382
934	Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. C. Sutherland. 1993.
935	"Seasonal Variation of CO ₂ and Nutrients in the High-Latitude Surface Oceans: A
936	Comparative Study." Global Biogeochemical Cycles 7(4):843-878.
937	https://doi.org/10.1029/93GB02263
938	Terrer, C., R. B. Jackson, I. C. Prentice, T. F. Keenan, C. Kaiser, S. Vicca, J. B. Fisher, P. B.
939	Reich, B. D. Stocker, B. A. Hungate, J. Peñuelas, I. McCallum, N. A. Soudzilovskaia, L.
940	A. Cernusak, A. F. Talhelm, K. Van Sundert, S. Piao, P. C. D. Newton, M. J. Hovenden,
941	D. M. Blumenthal, Y. Y. Liu, C. Müller, K. Winter, C. B. Field, W. Viechtbauer, C. J.
942	Van Lissa, M. R. Hoosbeek, M. Watanabe, T. Koike, V. O. Leshyk, H. W. Polley, and O.
943	Franklin. 2019. "Nitrogen and Phosphorus Constrain the CO ₂ Fertilization of Global
944	Plant Biomass." Nature Climate Change 9(9):684–689. https://doi.org/10.1038/s41558-
945	019-0545-2
946	Tian, R. C., A. F. Vézina, M. Starr, and F. Saucier. 2001. "Seasonal Dynamics of Coastal
947	Ecosystems and Export Production at High Latitudes: A Modeling Study." Limnology
948	and Oceanography 46(8):1845-1859. https://doi.org/10.4319/lo.2001.46.8.1845
949	Ullah, H., I. Nagelkerken, S. U. Goldenberg, and D. A. Fordham. 2018. "Climate Change Could
950	Drive Marine Food Web Collapse Through Altered Trophic Flows and Cyanobacterial
951	Proliferation." PLoS Biology 16(1):e2003446.
952	https://doi.org/10.1371/journal.pbio.2003446

953	Umanzor, S., J. Sandoval-Gil, M. Sánchez-Barredo, L. B. Ladah, MM. Ramírez-García, and J.
954	A. Zertuche-González. 2021. "Short-Term Stress Responses and Recovery of Giant Kelp
955	(Macrocystis pyrifera, Laminariales, Phaeophyceae) Juvenile Sporophytes to a Simulated
956	Marine Heatwave and Nitrate Scarcity." Journal of Phycology 57(5):1604–1618.
957	https://doi.org/10.1111/jpy.13189
958	Wahl, M., F. J. Werner, B. Buchholz, S. Raddatz, A. Graiff, B. Matthiessen, U. Karsten, C.
959	Hiebenthal, J. Hamer, M. Ito, E. Gülzow, G. Rilov, and T. Guy-Haim. 2020. "Season
960	Affects Strength and Direction of the Interactive Impacts of Ocean Warming and Biotic
961	Stress in a Coastal Seaweed Ecosystem." Limnology and Oceanography 65(4):807-827.
962	https://doi.org/10.1002/lno.11350
963	Walker, A. P., M. G. De Kauwe, A. Bastos, S. Belmecheri, K. Georgiou, R. F. Keeling, S. M.
964	McMahon, B. E. Medlyn, D. J. P. Moore, R. J. Norby, S. Zaehle, K. J. Anderson-
965	Teixeira, G. Battipaglia, R. J. W. Brienen, K. G. Cabugao, M. Cailleret, E. Campbell, J.
966	G. Canadell, P. Ciais, M. E. Craig, D. S. Ellsworth, G. D. Farquhar, S. Fatichi, J. B.
967	Fisher, D. C. Frank, H. Graven, L. Gu, V. Haverd, K. Heilman, M. Heimann, B. A.
968	Hungate, C. M. Iversen, F. Joos, M. Jiang, T. F. Keenan, J. Knauer, C. Körner, V. O.
969	Leshyk, S. Leuzinger, Y. Liu, N. MacBean, Y. Malhi, T. R. McVicar, J. Penuelas, J.
970	Pongratz, A. Shafer Powell, T. Riutta, M. E. B. Sabot, J. Schleucher, S. Sitch, W. K.
971	Smith, B. Sulman, B. Taylor, C. Terrer, M. S. Torn, K. K. Treseder, A. T. Trugman, S. E.
972	Trumbore, P. J. van Mantgem, S. L. Voelker, M. E. Whelan, and P. A. Zuidema. 2021.
973	"Integrating the Evidence for a Terrestrial Carbon Sink Caused by Increasing
974	Atmospheric CO ₂ ." New Phytologist 229(5):2413–2445.
975	https://doi.org/10.1111/nph.16866

976	Wheeler, W. N., and L. M. Srivastava. 1984. "Seasonal Nitrate Physiology of Macrocystis
977	integrifolia Bory." Journal of Experimental Marine Biology and Ecology 76(1):35–50.
978	https://doi.org/10.1016/0022-0981(84)90015-7
979	Wiencke, C., I. Gómez, and K. Dunton. 2009. "Phenology and Seasonal Physiological
980	Performance of Polar Seaweeds." Botanica Marina 52(6):585–592.
981	https://doi.org/10.1515/BOT.2009.078
982	Winter, B. 2013. "Linear Models and Linear Mixed Effects Models in R with Linguistic
983	Applications." arXiv 1308.5499. http://arxiv.org/abs/1308.5499
984	Zhang, X., D. Xu, W. Han, Y. Wang, X. Fan, I. Loladze, G. Gao, Y. Zhang, S. Tong, and N. Ye
985	2021. "Elevated CO ₂ Affects Kelp Nutrient Quality: A Case Study of Saccharina
986	japonica from CO ₂ -Enriched Coastal Mesocosm Systems." Journal of Phycology
987	57(1):379-391. https://doi.org/10.1111/jpy.13097
988	

989 Tables

	Winter Experiment				Summer Experiment			
	Control	OA	OW	OA & OW	Control	OA	OW	OA & OW
Dissolved Oxygen (mg/L)	9.5±0.9	9.3±1.2	8.5±1.4	8.4±1.5	8.5±0.2	8.4±0.2	7.9±0.3	7.8±0.2
Salinity (ppt)	31.3±0.3	31.4±0.3	31.3±0.3	31.4±0.3	31.0±0.2	31.0±0.2	31.1±0.2	31.1±0.2
Temperature (°C)	7.2±0.1	7.3±0.1	10.9±0.7	10.9±0.6	14.1±0.1	14.2±0.1	18.0±0.9	18.0±0.8
pH _T	7.65±0.01	7.21±0.01	7.66±0.01	7.28±0.01	7.88±0.01	7.46±0.02	7.84±0.01	7.51±0.02
pCO2 (µatm)	1011±22	2843±87	1001±23	2502±50	592±21	1667±103	648±14	1513±67
TA (µmol/kg)	2120±15	2122±14	2121±15	2125±14	2116±5	2116±5	2116±5	2115±5
[NO ₃ -]	16.3±1.3				3.7±0.4			
$[\mathrm{NH_4^+}]$	[NH ₄ ⁺] 4.8±1.0			10.3±1.4				

990 Table 1: Seawater conditions in experimental aquaria by treatment and seasonal experiment.

991

Note: Parameters are summarized as the mean \pm standard error for all replicate aquaria over the course of the experiments. Temperature, salinity, and dissolved oxygen were measured daily in all experimental aquaria. pH_T, *p*CO₂, TA, and nutrient concentrations were determined from discrete water samples taken in aquaria at the beginning, middle, and end of each experiment.

996	Figure Captions
997	Figure 1: Relative growth rates (RGR _{mass} ; mean \pm SE) of three kelp species exposed to different
998	treatment combinations of ocean acidification (OA) and warming (OW) within month-long
999	laboratory experiments in winter and summer (N= 18 individuals species ⁻¹ treatment ⁻¹).
1000	
1001	Figure 2: Tissue nitrogen content (%N; mean \pm SE) of three kelp species exposed to different
1002	treatment combinations of ocean acidification (OA) and warming (OW) within month-long
1003	laboratory experiments in winter and summer ($N=18$ individuals species ⁻¹ treatment ⁻¹).
1004	
1005	Figure 3: δ^{13} C values (‰; mean ± SE) of three kelp species exposed to different treatment
1006	combinations of ocean acidification (OA) and warming (OW) within month-long laboratory
1007	experiments in winter and summer (N= 18 individuals species ⁻¹ treatment ⁻¹). The dotted line at a
1008	δ^{13} C value of -30 ‰ is the putative threshold below which macroalgae exclusively rely on
1009	diffusive uptake of CO ₂ and no longer invest energy in carbon concentrating mechanisms (Raven
1010	et al. 2002).
1011	
1012	Figure 4: Relative consumption (mean \pm SE) of experimentally grown <i>H. nigripes</i> tissue in
1013	feeding assays used to test the seasonal effects of pH and temperature treatment on the

- 1014 palatability of algal tissue to a common kelp forest grazer. Lower case letters denote statistically
- 1015 significant differences among algal treatments.

1016 Figures

1017 Figure 1

1019 Figure 2

1021 Figure 3

1023 Figure 4

Appendix S1 Bell, L. E., L. Westphal, E. O'Brien, J. A. Toy, H. Damron, K. J. Kroeker, "Season Influences Interspecific Responses of Canopy-Forming Kelps to Future Warming and Acidification at High Latitude", *Ecosphere*

Figure S1. Linear blade extension rates of understory kelp species by treatment in seasonal experimental conditions (this study) compared to seasonal growth rates observed in situ at kelp forest sites in Sitka Sound (data from Bell and Kroeker 2022). Boxplots represent the data median, interquartile range, and any outliers for each group.

Figure S2. Relative consumption (mean \pm SE) of experimentally grown *N. fimbriatum* tissue in feeding assays used to test the effects of seasonal pH and temperature treatment on the palatability of algal tissue to a common kelp forest grazer.

Table S1. Summary statistics from mixed linear model analysis of Hedophyllum nigripes' relative growth rate as wet mass (% d⁻¹) by treatment in winter season experiment. Formula: *H. nigripes* RGR_{mass}~ pH * temperature + (1|header/aquaria)

i. Variance components for random effects

Groups	Variance	Std. Dev.
aquaria:header	0.013	0.113
header	0.000	0.000
residual	0.092	0.303

Number of observations: 69

Groups: aquaria: header, 24; header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
рН	0.187	0.187		18.87	2.038	0.170
temperature	2.601	2.601	1	18.87	28.42	< 0.001
pH:temperature	0.377	0.377	1	18.87	4.116	0.057

iii. Post-hoc pairwise contrasts among treatment levels

iii. Post-hoc pairwise contrasts among treatment levels								
Treatment Contrasts	Estimate	SE	df	t ratio	p value			
Control – OA	0.052	0.120	17.8	0.433	0.972			
Control – OW	0.636	0.123	19.3	5.173	< 0.001			
Control – OA & OW	0.338	0.122	18.5	2.777	0.054			
OA – OW	0.584	0.123	19.3	4.750	< 0.001			
OA – OA & OW	0.286	0.122	18.5	2.349	0.122			
OW – OA & OW	-0.299	0.124	19.9	-2.404	0.109			

Table S2. Summary statistics from mixed linear model analysis of *Hedophyllum nigripes*' relative growth rate as wet mass (% d⁻¹) by treatment in summer season experiment. Formula: *H. nigripes* RGR_{mass} ~ pH * temperature + (1|header/aquaria)

i. Variance components for random effects

Groups	Variance	Std. Dev.
aquaria:header	0.000	0.000
header	0.000	0.000
residual	0.585	0.765

Number of observations: 68

Groups: aquaria:header, 24; header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
рН	0.289	0.289	1	64	0.495	0.485
temperature	11.59	11.59	1	64	19.83	< 0.001
pH:temperature	0.069	0069	1	64	0.118	0.732

Table S3. Summary statistics from mixed linear model analysis of *Neoagarum fimbriatum*'s % change in wet mass (% d⁻¹) by treatment in winter season experiment. Formula: *N. fimbriatum* RGR_{mass} ~ pH * temperature + (1|header/aquaria)

i. Variance components for random effects

Groups	Variance	Std. Dev.
aquaria:header	0.000	0.000
header	0.000	0.000
residual	0.124	0.352

Number of observations: 72

Groups: aquaria:header, 24; header, 8

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
рН	0.121	0.121	P ₁	68	0.979	0.326	
temperature	0.152	0.152	1	68	1.228	0.272	
pH:temperature	0.003	0.003	1	68	0.026	0.873	

Table S4. Summary statistics from mixed linear model analysis of *Neoagarum fimbriatum*'s relative growth rate as wet mass (% d⁻¹) by treatment in summer season experiment. Formula: *N. fimbriatum* RGR_{mass} ~ pH * temperature + (1|header/aquaria)

i. Variance components for random effects

Groups	Variance	Std. Dev.
aquaria:header	0.000	0.000
header	0.000	0.000
residual	0.739	0.860

Number of observations: 63

Groups: aquaria:header, 21; header, 7

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
рН	1.089	1.089	CI_	59	1.472	0.230
temperature	17.25	17.25	1	59	23.33	< 0.001
pH:temperature	0.235	0.235	1	59	0.317	0.575

Table S5. Summary statistics from mixed linear model analysis of *Macrocystis pyrifera*'s relative growth rate as wet mass (% d⁻¹) by treatment in winter season experiment. Formula: *M. pyrifera* RGR_{mass} ~ pH * temperature + (1|header/aquaria)

i. Variance components for random effects

Groups	Variance	Std. Dev.
aquaria:header	0.000	0.000
header	0.013	0.114
residual	0.138	0.371

Number of observations: 60

Groups: aquaria:header, 24; header, 8

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
рН	0.212	0.212	P.	4.219	0.154	0.714	
temperature	0.196	0.196	1	4.219	1.420	0.296	
pH:temperature	0.032	0.032	1	4.219	0.229	0.656	

Table S6. Summary statistics from mixed linear model analysis of *Macrocystis pyrifera*'s relative growth rate as wet mass (% d⁻¹) by treatment in summer season experiment. Formula: *M. pyrifera* RGR_{mass} ~ pH * temperature + (1|header/aquaria)

i. Variance components for random effects

Groups	Variance	Std. Dev.
aquaria:header	< 0.001	0.013
header	0.000	0.000
residual	0.853	0.924

Number of observations: 70

Groups: aquaria: header, 24; header, 8

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
рН	1.248	1.248	P.	20.69	1.462	0.240	
temperature	1.580	1.580	1	20.69	1.851	0.188	
pH:temperature	0.049	0.049	1	20.69	0.060	0.812	

Table S7. Summary statistics from mixed linear model analysis of *Hedophyllum nigripes*' tissue nitrogen content (as % dry mass) by treatment in winter season experiment. Formula: *H. nigripes* tissue $%N \sim pH$ * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.0002	0.014
residual	0.019	0.138
Number of obser	vations: 23	

Groups: header, 8

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
рН	0.042	0.042		4.180	2.196	0.210	
temperature	0.628	0.628	1	4.180	33.18	0.004	
pH:temperature	0.027	0.027	1	4.180	1.432	0.295	

Table S8. Summary statistics from mixed linear model analysis of *Hedophyllum nigripes*' tissue nitrogen content (as % dry mass) by treatment in summer season experiment. Formula: *H. nigripes* tissue $%N \sim pH$ * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.009	0.096
residual	0.057	0.238
Number of obser	vations: 23	

Groups: header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
рН	0.023	0.023		3.191	0.401	0.569	
temperature	0.145	0.145	1	3.191	2.561	0.203	
pH:temperature	0.0002	0.0002	1	3.191	0.003	0.957	

Table S9. Summary statistics from mixed linear model analysis of *Neoagarum fimbriatum*'s tissue nitrogen content (as % dry mass) by treatment in winter season experiment. Formula: *N. fimbriatum* tissue %N ~ pH * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.002	0.049
residual	0.002	0.046
Number of obser	vations: 24	

Groups: header, 8

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
рН	0.000	0.000		4	0.000	1.000
temperature	0.064	0.064	I	4	30.73	0.005
pH:temperature	0.002	0.002	1	4	0.727	0.442

Table S10. Summary statistics from mixed linear model analysis of *Neoagarum fimbriatum*'s tissue nitrogen content (as % dry mass) by treatment in summer season experiment. Formula: *N. fimbriatum* tissue $%N \sim pH *$ temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.003	0.057
residual	0.005	0.068
Number of obser	vations: 24	

Groups: header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
рН	0.000	0.000		4	0.000	1.000	
temperature	0.121	0.121	1	4	26.47	0.007	
pH:temperature	0.005	0.005	1	4	1.059	0.362	

Table S11. Summary statistics from mixed linear model analysis of *Macrocystis pyrifera*'s tissue nitrogen content (as % dry mass) by treatment in winter season experiment. Formula: *M. pyrifera* tissue $%N \sim pH *$ temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.000	0.000
residual	0.008	0.087

Number of observations: 23 Groups: header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
pH	0.092	0.092	5	19	12.04	0.003	
temperature	0.140	0.140	1	19	18.42	<0.001	
pH:temperature	0.001	0.001	1	19	0.075	0.787	

iii. Custom post-hoc contrast between responses of algae grown in the control treatment versus the combined OW & OA treatment

Treatment Contrast	Estimate	SE	df	t ratio	p value
OW & OA – Control	-0.03	0.053	19	-0.568	0.577

Table S12. Summary statistics from mixed linear model analysis of *Macrocystis pyrifera*'s tissue nitrogen content (as % dry mass) by treatment in summer season experiment. Formula: *M. pyrifera* tissue $%N \sim pH *$ temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.005	0.069
residual	0.021	0.144
11 1 0 1		

Number of observations: 24 Groups: header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)	
рН	0.004	0.004		4	0.191	0.685	
temperature	0.016	0.016	L	4	0.762	0.432	
pH:temperature	0.004	0.004	1	4	0.191	0.685	

0.71

Table S13. Summary statistics from mixed linear model analysis of *Hedophyllum nigripes*' tissue δ^{13} C values by treatment in winter season experiment. Formula: *H. nigripes* δ^{13} C ~ pH * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.000	0.000
residual	1.023	1.011

Number of observations: 23 Groups: header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
pH	76.78	76.78		19	75.07	<0.001
temperature	5.589	5.589	1	19	5.465	0.031
pH:temperature	0.056	0.056	1	19	0.055	0.817

Table S14. Summary statistics from mixed linear model analysis of *Hedophyllum nigripes*' tissue δ^{13} C values by treatment in summer season experiment. Formula: *H. nigripes* δ^{13} C ~ pH * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.006	0.080
residual	0.825	0.908
Number of obse	ervations: 23	

Groups: header, 8

ii. ANOVA results from the mixed linear model

SS	MSE	numDF	denDF	F value	Pr(>F)
30.82	30.82		3.870	37.45	0.004
23.73	23.73	CI_	3.870	28.75	0.006
3.417	3.417	1	3.870	4.140	0.114
	SS 30.82 23.73 3.417	SS MSE 30.82 30.82 23.73 23.73 3.417 3.417	SS MSE numDF 30.82 30.82 1 23.73 23.73 1 3.417 3.417 1	SS MSE numDF denDF 30.82 30.82 1 3.870 23.73 23.73 1 3.870 3.417 3.417 1 3.870	SS MSE numDF denDF F value 30.82 30.82 1 3.870 37.45 23.73 23.73 1 3.870 28.75 3.417 3.417 1 3.870 4.140

Table S15. Summary statistics from mixed linear model analysis of *Neoagarum fimbriatum*'s tissue δ^{13} C values by treatment in winter season experiment. Formula: *N. fimbriatum* δ^{13} C ~ pH * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.208	0.456
residual	0.404	0.635
Number of obse	ervations: 24	

Groups: header, 8

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
		~				
pH	27.50	27.50	1	4	68.10	0.001
temperature	0.015	0.015	G.	4	0.037	0.858
pH:temperature	1.019	1.019	1	4	2.523	0.187

Table S16. Summary statistics from mixed linear model analysis of *Neoagarum fimbriatum*'s tissue δ^{13} C values by treatment in summer season experiment. Formula: *N. fimbriatum* δ^{13} C ~ pH * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.236	0.486
residual	0.454	0.674

Number of observations: 24 Groups: header, 8

ii. ANOVA results from the mixed linear model

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
pН	45.94	45.94		4	101.1	<0.001
temperature	0.056	0.056	Q.	4	0.123	0.744
pH:temperature	0.539	0.539	1	4	1.186	0.337

Table S17. Summary statistics from mixed linear model analysis of *Macrocystis pyrifera*'s tissue δ^{13} C values by treatment in winter season experiment. Formula: *M. pyrifera* δ^{13} C ~ pH * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.	
header	0.000	0.000	
residual	4.927	2.168	

Number of observations: 23 Groups: header, 8

	WISE	numDF	denDF	F value	Pr(>F)	
8.779	8.779		19	1.868	0.188	
2.386	2.386	P.	19	0.508	0.485	
9.799	9.799	1	19	2.085	0.165	
	8.779 2.386 9.799	8.779 8.779 2.386 2.386 9.799 9.799	8.779 8.779 1 2.386 2.386 1 9.799 9.799 1	8.779 8.779 1 19 2.386 2.386 1 19 9.799 9.799 1 19	8.779 8.779 1 19 1.868 2.386 2.386 1 19 0.508 9.799 9.799 1 19 2.085	8.779 8.779 1 19 1.868 0.188 2.386 2.386 1 19 0.508 0.485 9.799 9.799 1 19 2.085 0.165

Table S18. Summary statistics from mixed linear model analysis of *Macrocystis pyrifera*'s tissue δ^{13} C values by treatment in summer season experiment. Formula: *M. pyrifera* δ^{13} C ~ pH * temperature + (1|header)

i. Variance components for random effects

Groups	Variance	Std. Dev.
header	0.297	0.545
residual	0.591	0.769
N 1 C 1		

Number of observations: 24 Groups: header, 8

Source	SS	MSE	numDF	denDF	F value	Pr(>F)
рН	19.68	19.68		4	33.31	0.004
temperature	0.103	0.103	CI	4	0.174	0.698
pH:temperature	0.584	0.584	1	4	0.989	0.376

Table S19. Summary statistics from analysis of the relative consumption of *H. nigripes* by pH and temperature treatment and seasonal experiment.

i.	Two-way	ANOVA	results for	relative	consumption
----	---------	-------	-------------	----------	-------------

Source	SS	MSE	DF	F value	Pr(>F)
Treatment	0.831	0.831	1	4.571	0.036
Season	1.245	1.245	1	6.848	0.011
Treatment:Season	0.720	0.720	1	3.964	0.051

ii. Tukey's post-hoc tests comparing the effects of seasonal experiment and combined pH and temperature treatment on relative consumption

Condition1	Condition2	Mean diff	95% CI lower	95% CI upper	Ptukey
Summer OW+OA	Summer Control	0.360	0.036	0.685	0.024
Winter Control	Summer Control	-0.062	-0.485	0.361	0.980
Winter OW+OA	Summer Control	-0.146	-0.556	0.263	0.782
Winter Control	Summer OW+OA	-0.423	-0.846	0.000	0.050
Winter OW+OA	Summer OW+OA	-0.507	-0.916	-0.098	0.009
Winter OW+OA	Winter Control	-0.084	-0.575	0.407	0.969

Table S20. Summary statistics from analysis of the relative consumption of *N. fimbriatum* by pH and temperature treatment and seasonal experiment.

i. Two-way ANOVA results for relative consumption

Source	SS	MSE	DF	F value	Pr(>F)
Treatment	0.001	0.001	1	0.011	0.915
Season	0.163	0.163	1	3.475	0.067
Treatment:Season	0.067	0.067	1	1.421	0.238
References

Bell, L. E., and K. J. Kroeker. 2022. "Standing Crop, Turnover, and Production Dynamics of *Macrocystis pyrifera* and Understory Species *Hedophyllum nigripes* and *Neoagarum fimbriatum* in High Latitude Giant Kelp Forests." *Journal of Phycology* 58(6): 773–788. https://doi.org/10.1111/jpy.13291

tor peries only